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Abstract. Solving discrete optimization problems on D-Wave’s quan-
tum platform requires formulating the problem in the form of quadratic
programming. In this work we consider an NP-hard two-machine flow
problem with minimization of the sum of jobs weighted tardinesses. We
present two formulations of the Constrained Quadratic Model (CQM) for
solving the considered problem, the transformation method to QUBO,
and the results of computational experiments performed in three envi-
ronments: LeapHybridSampler, DWaveSampler, and Gurobi. We propose
a novel approach to constructing hybrid quantum annealing algorithms
generating solutions very close to or equal to the optimal ones.

Keywords: quantum annealing · quantum computing · scheduling ·
discrete optimization · flow shop

1 Introduction

Quantum computing represents an attractive new field of intensive research.
Despite the growing capabilities of quantum machines, they are not yet a real
competitor to classical approaches based on massive supercomputing calcula-
tions. This is especially visible in the case of NP-hard combinatorial optimiza-
tion problems - we are actually able to solve problems with sizes of several
dozen or several dozen integer variables or several hundred binary variables on
quantum computers. However, classical computing systems are currently able to
accurately solve tasks with sizes of tens of thousands of variables (e.g. Concorde
solver for traveling salesman problem, Gurobi, CPLEX, etc.).
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Among the solutions in the field of quantum computing, two approaches
can be distinguished: general quantum computing, implemented by circuits with
quantum gates (IBM, Google, Amazon, Intel, Alibaba Group), and quantum
annealers (D-Wave, NEC, Qilimanjaro, A Star Quantum, JiJ). In this work, we
use the second approach as it fits the problem of discrete optimization exception-
ally well. The work is a continuation of research on the construction of accurate
quantum optimization algorithms for NP-hard problems (see [4,5]). An impor-
tant limitation of running calculations in the quantum annealer environment
is the formulation of the task in the form of quadratic or linear programming
without constraints. In practice, this requires a precise formulation of the task
without the use of recursion (very useful in the current practice of model con-
struction), and the constraints - in order to “build” them into the objective
function, must be at most linear. In this work, we formulate this type of model
for a certain task scheduling problem.

We consider a two-machine flow problem with minimizing the sum of late
costs (total weighted tardiness minimization in two-machine flow shop problem),
which in the literature is denoted by F2||

∑
wiTi. Each of n jobs must be com-

pleted successively on the first one and then on the second one machine. The data
includes job execution times and the latest dates for their completion (on the
second machine). Exceeding this deadline will result in a penalty being charged,
depending on the extent of the delay and a constant penalty factor. You need to
determine the order in which the jobs should be performed (the same on both
machines). minimizes the sum of penalties. A similar problem with minimizing
the deadline for completing jobs (criterion Cmax) is polynomial (Johnson’s algo-
rithm with complexity O(n ln n), where n is the number of jobs). In the case of
a larger (than two) number of machines, the problem with the Cmax criterion
belongs to the class of the most difficult ones, NP -hard, and is one of the classic
discrete optimization problems today. Many of its specific properties have been
proven (e.g., blocks from the critical path), which are successfully used in the
construction of very effective exact and approximate algorithms.

In this paper, we propose using the quantum computing environment to solve
the NP-hard task scheduling problem. The main disadvantage of calculations on
quantum computers is their non-determinism. Therefore, there is no guarantee
of optimality of solutions to discrete optimization problems determined on a
quantum computer. We propose an innovative approach to constructing hybrid
algorithms that alternately use calculations performed on a classical computer
and a quantum computer, guaranteeing the optimality of the solution.

2 Related Works

Problem F2||
∑

wiTi is a generalization of the NP-hard, the single-machine prob-
lem with the same criterion, i.e., minimization sum of late penalties

∑
wiTi. The

single-machine problem has a long history, over 50 years old. Over the years,
many exact and approximate algorithms have been published. Its description,
specific properties elimination, and a very effective algorithm based on the tabu
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search method can be found in the work of Bożejko, Grabowski, and Wodecki
[3].

There are relatively few works devoted to examining the F2||
∑

wiTi problem
in terms of specific properties and methods of solving it. Ruiz and Stützle [12]
presented a greedy algorithm, Liao et al. [9] method-based algorithm searching
with taboos. Some theoretical and good results approximation algorithms are
presented in the works: Lin [10] and Bulfin i Hallah [6]. There are much more
works devoted to two-machine problems with criteria other than those considered
in this work. Algorithms optimal (based on the B&B scheme) for certain variants
problems with sum costs criteria are described in the works: Moukrim et al. [11]
and Hamdi et al. [8]. As the authors write, within a reasonable time, it is possible
solve examples with the number of jobs not exceeding 50. There is much more
work on approximate algorithms: construction, metaheuristics and their hybrids.
Especially interesting works published in the last few years: Ahmadi et al. [1],
Cheng et al. [7], and also Ardakan et al. [2].

In this paper, we present a description of the problem under consideration
and formulate two of its mathematical models as constrained quadratic program-
ming tasks. This is a natural way of formulating tasks for the D-Wave quantum
platform. We also present the results of the computational experiments per-
formed.

3 Description of the Problem and Its Mathematical
Model

Two-machine permutation flow problem with minimizing the total costs of delays
can be formulated as follows:

TT2FS Problem: Given a set of jobs

J = {1, 2, . . . , n},

Job and the set of machines
M = {1, 2}.

Job j ∈ J consists of two operations Oj1, Oj2. The operation Ojk corresponds
to the action executing job j on machine k. For job i ∈ J we define:

pik - execution time of operation Oik,
di - requested term endings,
wi - missing penalty coefficient.

Each job must be performed on both machines, and they must be fulfilled
the following limitations:

(a) each job must be performed on first, and then on the second machine,
(b) the execution of the job cannot be interrupted,
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(c) job can only be performed on one machine at a time,
(d) the machine cannot execute more than that at the same time than one job,
(e) order of job execution, on both machines, it must be the same.

Any order of job execution that satisfies constraints (a)–(e) may be represented
by some permutation of elements (jobs) from the set J . Let Φ be the set of all
such permutations.

For permutation π ∈ Φ (a fixed order of execution of jobs on machines), let
Sπ(i),j will be the starting point of the operation Oπ(i),j (i ∈ J , j = 1, 2). From
constraints (b) and (c) it follows that Cπ(i),j = Sπ(i),j + pπ(i),j is the moment
of termination of the operation Oπ(i),j . These moments can be determined from
the following relationships recursive:

Cπ(i),j = max{Cπ(i−1),j , Cπ(i),j−1} + pπ(i),j , i = 1, 2, . . . , n, j = 1, 2, (1)

with initial conditions:

Cπ(0),j = 0, j = 1, 2 and Cπ(i),0 = 0, i = 1, 2, . . . , n, (2)

or non-recursive

Ck(π) = Cπ(k),2 = max

{
k−s∑

i=1

pπ(i),1 +
k∑

i=k−s

pπ(i),2 : s = 0.1, . . . , k − 1

}

, (3)

for k = 1, 2, . . . , n. By Ck(π) = Cπ(i),2 we denote the deadline for completing
the job π(i), i.e. operation Oπ(i),2. Then

Tπ(i) = max{0, Cπ(i) − dπ(i)} (4)

is the tardiness of job π(i) = wπ(i) ·Tπ(i) penalty for being late (in other words -
cost of execution jobs). If Tπ(i), = 0, then the job is called timely, and otherwise
- late. Penalty for late completion of jobs (abbreviated as solution cost)

T (π) =
n∑

i=1

wπ(i) · Tπ(i). (5)

In the problem under consideration, the order of execution should be deter-
mined jobs that minimizes the sum of penalties for late jobs, i.e. permutation
optimal π∗ ∈ Φ for which

T ∗ = T (π∗) = min{T (π) : π ∈ Φ}. (6)

4 Constrained Quadratic Model

In this chapter, we propose two constrained quadratic programming models for
the considered problem. They allow the solution (or its upper bound if optimiza-
tion is not exact) to be determined by a quantum annealer.
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4.1 First Model with Completion Times

In this case, we use a binary matrix x to remember the order of jobs (i.e. per-
mutations π) and auxiliary variables Ck representing the completion times of the
jobs on the second machine.

Goal to minimize:

min
x,C,T

n∑

i=1

n∑

j=1

wjxijTi (7)

with constraints (subject to):

n∑

i=1

xij = 1, j = 1, 2, . . . , n, (8)

n∑

j=1

xij = 1, i = 1, 2, . . . , n, (9)

Ck ≥
k−s∑

i=1

n∑

j=1

pj,1xij +
k∑

i=k−s

n∑

j=1

pj,2xij , k = 1, 2, . . . , n, s = k − 1, k − 2, . . . , 0,

(10)

Tk ≥ Ck −
n∑

j=1

xkjdj , k = 1, 2, . . . , n, (11)

Tk ≥ 0, k = 1, 2, . . . , n, (12)

xij ∈ {0, 1}, i, j = 1, 2, . . . , n, (13)

Ck ∈ N ∪ {0}, k = 1, 2, . . . , n. (14)

The matrix x = [xij ]n×n is interpreted as follows: if xij = 1, then a job j is on
the position i in the schedule (zero otherwise).

4.2 Second Model

In this model, we propose to use fewer variables by reducing the use of Ck

variables, while maintaining x and Tk.
Goal to minimize:

min
x,T

n∑

i=1

n∑

j=1

wjxijTi (15)

with constraints (subject to):

n∑

i=1

xij = 1, j = 1, 2, . . . , n, (16)

n∑

j=1

xij = 1, i = 1, 2, . . . , n, (17)
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Tk ≥
k−s∑

i=1

n∑

j=1

pj,1xij +
k∑

i=k−s

n∑

j=1

pj,2xij −
n∑

j=1

xkjdj ,

k = 1, 2, . . . , n, s = 0, 1, . . . , k − 1, (18)

Tk ≥ 0, k = 1, 2, . . . , n, (19)

xij ∈ {0, 1}, i, j = 1, 2, . . . , n. (20)

The matrix x = [xij ]n×n is interpreted as follows: if xij = 1, then a job j is on
the position i in the schedule (zero otherwise).

5 Computational Experiments

A quantum machine and a computing environment provided by the Canadian
company D-Wave were used to carry out the calculations. The proposed algo-
rithm was launched in two versions: (i) in the LeapHybridCQMSampler environ-
ment using the CPU, GPU as well as QPU (with automatic defining tasks for
the QPU, which performs quantum annealing) and (ii) in the D-WaveSampler
environment (with native use of quantum annealing). A discussion of the QPU
usage in LeapHybridSampler can be found in the work of Stogiannos et al. [13].
To compare the quality of the obtained results, the optimal algorithm was run
in the Gurobi environment, determining the value of T ∗.

UB (Upper Bound) formulation is given as CQM – Constrained Quadratic
Model. Now, we have two possibilities to compute them on D-Wave:

(i) run them in LeapHybridSolver environment (on CPUs, GPUs and QPU), or
(ii) convert them to BQM (Binary Qaudratic Model) and QUBO and run as

hardware Quantum Annealing procedure.

The second approach we can achieve by using dimod.cqm to bqm procedure of
D-Wave Ocean SDK:

cqm_to_bqm(cqm: ConstrainedQuadraticModel, lagrange_multiplier:
float | floating | integer | None = None) -> Tuple
[BinaryQuadraticModel, CQMToBQMInverter]}

The calculations were performed in the D-Wave Leap environment using the
following:

(i) hybrid constrained quadratic model version1p solver –
LeapHybridCQM
Sampler class from dimod package,

(ii) Advantage system6.4 solver – DwaveSampler class from dimod package,

and run on a machine using Pegasus topology type. The number of active cou-
plers for the D-Wave solver was 40297, and the number of active qubits 5627.

Table 1 contains the results of computational experiments on test data for
the considered two-machine problem. Optimal solutions are marked in bold (the
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Table 1. Results of computational experiments of upper bounds calculation

run n LeapHybridCQMSampler DWaveSampler Gurobi

UB tQPU [ms] tRUN [s] UB tQPU [ms] No.int No.var T ∗

1 3 62 31.96 5.14 1005 16.13 1464 93 62

2 4 77 32.02 5.21 2879 15.93 2963 142 77

3 5 163 32.04 5.26 7065 16.01 6245 224 163

4 6 320 16.04 5.04 * * 12315 336 320

5 7 197 32.00 5.08 * * 20104 443 197

6 8 191 16.02 5.00 * * 31209 564 191

7 9 558 31.93 5.35 * * 46506 699 426

8 10 654 16.01 5.02 * * 73349 912 516

* embedding onto QPU not possible

reference model in Gurobi was determined by optima - the far right column of the
table). The following columns contain: run run number; example size n; upper
bound value UB for the LeapHybridCQMSampler solver (implementing hybrid
computations combining metaheuristics on the CPU and quantum annealing on
the QPU); running time of this solver on QPU (QPU ACCESS TIME); total
running time of this solver (RUN TIME); upper bound value UB for the native
DWaveSampler solver (implementing only quantum annealing); running time
of this solver on QPU (QPU ACCESS TIME); number of interactions of BQM
model (No.int); number of binary variables (No.var) of BQM model. Due to
the complexity of the representation, relatively small examples were selected for
testing (n = 3, 4, . . . , 10), which, however, already for n ≥ 6 the model was too
big for embedding on the QPU quantum processor – the number of interactions
between variables for n = 6 is already 12315 and the number of binary variables
is 336, which exceeds the possibilities of embedding this model on a quantum
processor – given the current state of quantum hardware capabilities.

The main goal of the computational experiments performed was to compare
the effectiveness of the LeapHybridCQMSampler and DWaveSampler models.
For sizes from n = 3 to 8, the results obtained by LeapHybridCQMSampler are
optimal (equal to Gurobi’s results). For sizes n = 7 and 8 only approximate
solutions were obtained. The lack of optimal solutions results from the fact that
the number of variables and interactions between them (see No.var and No.int
columns in Table 1) exceeds the possibilities of embedding the D-Wave quantum
processor in the Pegasus topology. The average PRD error for LeapHybridC-
QMSampler’s UB results is 7%. The gun time was practically constant and
amounted to about 5 s.

In turn, DWaveSampler, which performs native quantum annealing, was only
able to recalculate examples with sizes n = 3.4 and 5, with a large error. It
is worth emphasizing the very short operating time of this model, around 16
milliseconds.
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The Fig. 1 shows the Percentage Relative Devatyions (PRD) of LeapHybrid-
CQMSamper compared to the Gurobi package solutions for different input data
sizes n = 3, 4, . . . , 10 (marked with a solid line). Additionally, the running times
tRUN of the algorithm are marked with a dashed line.

Fig. 1. Comparison of LeapHybridCQMSampler’s PRD relative errors (solid line) and
tRUN runtimes (dotted line).

6 Conclusions

Solving discrete optimization problems on the D-Wave quantum platform
requires formulating them as a constrained quadratic programming problem. For
many NP-hard problems this is not easy, because it is necessary to use an addi-
tional large number of variables and constraints. Therefore, the size of the task
increases significantly, making its solution more difficult. Despite, performing
calculations on a quantum computer creates new possibilities in constructing
new, effective optimal algorithms. The work considered the NP-hard problem
of scheduling jobs on two machines. Models of the problem were formulated,
enabling calculations on the D-Wave quantum platform, and the results of the
conducted computational experiments.

Future research directions are planned to further investigate the model’s
effectiveness and efficiency across various variables representation, taking into
account the possibility of embedding larger problems on the QPU. Additionally,
integration with other advanced computational techniques (such as reducing the
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degree of binary polynomials to QUBO) are planned to enhance the algorithm’s
overall efficiency and performance.
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