
Future Generation Computer Systems 155 (2024) 245–255

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Quantum annealing-driven branch and bound for the single machine total
weighted number of tardy jobs scheduling problem
Wojciech Bożejko a,∗, Jarosław Pempera a, Mariusz Uchroński b, Mieczysław Wodecki c

a Department of Control Systems and Mechatronics, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-372 Wrocław, Poland
b Wroclaw Centre for Networking and Supercomputing, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
c Department of Telecommunications and Teleinformatics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

A R T I C L E I N F O

Keywords:
Optimization
Quantum computing
Scheduling
Optimal algorithm
Quantum annealing
Lagrange relaxation

A B S T R A C T

In the paper we present a new approach to solving NP-hard problems of discrete optimization adapted to
the architecture of quantum processors (QPU, Quantum Processor Unit) implementing hardware quantum
annealing. This approach is based on the use of the quantum annealing metaheuristic in the exact branch
and bound algorithm to compute the lower and upper bounds of the objective function. To determine the
lower bound, a new method of defining the Lagrange function for the dual problem (the generalized discrete
knapsack problem) was used, the value of which is calculated on the QPU of a quantum machine. In turn, to
determine the upper bound, we formulate an appropriate task in the form of binary quadratic programming
with constraints.

Despite the fact that the results generated by the quantum machine are probabilistic, the hybrid method
of algorithm construction proposed in the paper, using alternately a CPU and QPU, guarantees the optimal
solution. As a case study we consider the NP-hard single machine scheduling problem with minimizing the
weighted number of tardy jobs. The performed computational experiments showed that optimal solutions were
already obtained in the root of the solution tree, and the values of the lower and upper bounds differ by only
a few percent.
1. Introduction

The concept of quantum computing originates from the 1980s.
Currently, quantum computers are available that represent one of two
approaches to quantum computing. The first, offered by companies
such as Google, Honeywell, IBM and Intel, are quantum computers
with quantum gate models (e.g., Hadamard and Toffoli). Unlike many
classical logic gates, quantum logic gates are reversible. Programming
in this model of quantum computing is still a great challenge due to
the small scale of solvable problems and the lack of a high-level ap-
proach, adequate to high-level languages in the programming of classic
silicon computers. The second approach, called quantum annealing, by
using effects known as quantum fluctuations and quantum tunneling,
determines the best possible solution to the optimization problem, see
e.g., (Bozejko et al. [1]). D-Wave Systems provides quantum computers,
proposing an approach to computation limited only to the use of
quantum annealing; however, it is perfectly suited to the needs of the
discipline of operations research. In this case, instead of expressing the
algorithm solving a given problem in the form of quantum gates, the
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user presents it as a binary quadratic programming problem. However,
Aharonov et al. [2] show that quantum annealing (as an adiabatic
quantum computation) is equivalent to the standard quantum-gate
model of a quantum computer.

There are several attempts to apply the methodology of quantum
computations to operational research problems. Regarding branch and
bound quantum modifications, Montanaro [3] describes a quantum
algorithm that can accelerate classical branch-and-bound algorithms
near-quadratically in a general setting. The author considers a spin
model addressed using branch-and-bound, which is the Sherrington–
Kirkpatrick model, which is the family of classical Hamiltonians 𝐻(𝑥) =
∑

1≤𝑖<𝑗≤𝑛 𝑎𝑖𝑗𝑥𝑖𝑥𝑗 where 𝑥 ∈ {±1} and 𝑎𝑖𝑗 are distributed according
to the normal distribution. Finding the lowest-energy state for such
a Hamiltonian can be achieved in time 𝑂(20.5𝑛𝑝𝑜𝑙𝑦(𝑛)) using Grover’s
algorithm, which is less efficient than the approach proposed in [3]
with the time 𝑂(20.226𝑛).

The paper of Markevich and Trushechkin [4] shows the theoreti-
cal branch and bound for a quantum-gates based quantum computer
(without experiments).
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In the case of applying quantum annealing to scheduling problems,
Ikeda et al. [5] proposes the application of Quantum Annealing to the
Nurse Scheduling Problem using a D-Wave 2000Q quantum annealer
(2048 qubits with a mean 6 connections per qubit) with the approxi-
mate results of computational experiments. Carugno et al. [6] propose
quantum annealing with QUBO formulation of job shop scheduling on
a D-Wave 2000Q. The authors state that quantum solvers generally
provide a worse solution quality compared with the best classical
ones. Bożejko et al. [7] propose to use D-Wave quantum environ-
ment for exact solving single machine scheduling problem with a total
weighted tardiness cost function. Stogiannos et al. [8] compare several
attempts to solve the traveling salesman problem (TSP) with using a
D-Wave quantum computer. In turn, in the conference paper Bożejko
et al. [9], the authors consider a similar problem of jobs scheduling on
a single machine with the criterion of total weighted number of on-
time jobs maximization. The authors proposed a truncated Branch and
Bound scheme (with a limited number of tree levels). It allowed for
determining the potential of the components of the method.

One of the simplest scheduling problems to formulate (though NP-
hard) on one machine is the Weighted Number of Tardy jobs minimization
roblem (WNT for short) considered in this paper. It is defined as
ollows:

roblem 1 (Weighted Number of Tardy Jobs Minimization Problem,
WNT).There is a set of 𝑛 jobs given  = {1, 2,… , 𝑛} which must be
arried out on one machine without interruption. A machine can only
erform one job at any given time. With every job 𝑖 ∈  there are the
ollowing properties linked:

𝑝𝑖 – processing time,
𝑑𝑖 – due date,
𝑤𝑖 – cost of the penalty function.

or a fixed order of execution of jobs on the machine, let 𝐶𝑖 be the
ompletion time for execution of job 𝑖 ∈  . Then, tardiness 𝑈𝑖 = 1, when
𝑖 > 𝑑𝑖 or 0 otherwise. The value of 𝑤𝑖𝑈𝑖 is a weight of tardy job. In the
roblem under consideration it is necessary to determine the order of
xecution of jobs on the machine that minimizes the weighted number
f tardy jobs, i.e., ∑𝑛

𝑖=1 𝑤𝑖𝑈𝑖.

In the literature, such problems are denoted by 1||
∑

𝑤𝑖𝑈𝑖 and
espite their simplicity of the formulation, they belong to the class
f NP-hard problems (Karp [10], Lenstra and Rinnoy Kan [11]). It is
lso one of many single-machine scheduling problems which have been
tudied for many years. Its variants have constantly been considered,
ainly due to the polynomial computational complexity. Later in the
ork, without loss of generality, we can assume that 𝑑𝑖 ≥ 0, 𝑖 =
, 2,… , 𝑛, since jobs with negative values of due dates can be moved
o the end of the schedule (because they are always tardy and in the
ptimization process have the same cost regardless of the solution).

For the problem 1|𝑝𝑖 = 1|
∑

𝑤𝑖𝑈𝑖 (all jobs’ execution times are the
ame) Monma in his work (Monma [12]) introduced algorithm com-
lexity 𝑂(𝑛). Likewise, for the problem 1|𝑤𝑖 = 𝑐|

∑

𝑈𝑖 with the same
oefficients of the cost function, there is a Moore (Moore [13], Lawler
14]) algorithm with a complexity of 𝑂(𝑛 ln 𝑛).

If a partial order relation is specified on the job set then WNT
problems are strongly NP-hard even when all the job execution times
re unitary (Garey and Johnson [15]).

Only a few optimal algorithms have been published in the literature
olving the WNT problem. They are based on the dynamic program-
ing method (Lawler and Moore, 1977) – complexity 𝑂(𝑛min{

∑

𝑝𝑖,
max{𝑑𝑖}}) and (Sahni [16]) – complexity 𝑂(𝑛min {∑ 𝑝𝑖,

∑

𝑤𝑖, max{𝑑𝑖}})
nd on the Branch and Bound method (Villareal and Bulfin [17], Potts
nd Van Wassenhove [18], M’Hallah and Bulfin [19]). An extended
ersion of the problem, with due dates 𝑑𝑖 and deadlines 𝑑𝑖, is in turn
onsidered in (Hejl et al. [20]). MIP-based lower and upper bounds
246

re considered in the work (Briand and Ourari [21]). The literature
lso deals with single-machine scheduling problems with uncertain
xecution times or desired completion dates (Rajba and Wodecki [22]).

The paper presents a hybrid optimal algorithm for solving the WNT
roblem, the construction of which is based on the (Branch and Bound,
&B) method. We propose a new approach based on determining the
pper and lower bounds of the objective function on the D-Wave
uantum computer. To determine the upper bound, we formulate an
ppropriate task in the form of binary quadratic programming with
onstraints. Quadratic programming is a natural way of formulating
asks for quantum annealer, as long as the objective function has at
ost quadratic form and the constraints are linear. Then it is easy to

ransform such a model, called Constraint Quadratic Model, CQM, to
QM (Binary Quadratic Model) using Lagrange’s relaxation to build
onstraints into the objective function (this is done, for example, by
he dimod.cqm_to_bqm procedure of D-Wave Ocean SDK, available
nder an open source license). BQM, in turn, can be run natively
s quantum annealing on a D-Wave quantum computer — it can
echnically represent both the QUBO and Ising models.

In turn, when determining the lower bound, we use the directed
ormulated Lagrange relaxation method. The approximation of the
aximum value of the Lagrange function is also determined on a quan-

um computer. As a criterion for selecting the next node in the solution
ree, we use the upper bound of the objective function. Moreover, the
esults of the conducted computational experiments are presented later.

In the formulation and throughout the paper, we use the following
otation:

𝑛 – number of all jobs;
 – set of all jobs, | | = 𝑛;
𝑝𝑖 – time of job 𝑖 execution;
𝑤𝑖 – job 𝑖 tardiness cost coefficient;
𝑑𝑖 – due date of job 𝑖 completion;
𝜋 – permutation of jobs;
𝛷 – set of all permutations of elements from  ;
𝑆𝑖 – moment of starting the job 𝑖 ∈  ;
𝐶𝑖 – moment of completing the job 𝑖 ∈  ;
𝑈𝑖 – binary tardiness of job 𝑖 (0 or 1);
𝐹 (𝜋) – sum of the costs of tardinesses (the criterion);
 – solution tree;
ℎ – level of the tree;
𝑡 – number of fixed jobs;
(𝜋) – set of free jobs;
𝑈𝐵𝜋 – the upper bound of the

objective function at node 𝜋;
𝐿𝐵𝜋 – the lower bound of the

objective function at node 𝜋;
𝐿 – dual Lagrange function;
𝑄𝐴𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒 – value of the lower bound of the

objective function of the WNT;
𝑄𝑢𝑎𝑛𝑡𝑢𝑚𝐴𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔 – value of the upper bound of

objective function of WNT;

2. Quantum annealing

Quantum annealing is a promising computational method that uses
quantum phenomena to solve particularly difficult computational tasks.
The rapid development of this type of computation has been caused
by the presence of the D-Wave Systems quantum annealing device
available on the market, as well as the works carried out by the
Japanese NEC corporation. A quantum machine for quantum annealing
handles some limited class of optimization problems. In order to solve
the problem on the D-Wave quantum annealer, the problem under
consideration should be formulated as the problem of Quadratic Un-
constrained Binary Optimization (QUBO). Currently, there has been an
intense search for the possibility of applying this technology in practice,
by learning about its possibilities and limitations. The quantum anneal-
ing machine, through the continuous evolution of the quantum system,
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searches for the minimum energy of the Ising Hamiltonian (Ajagekar
et al. [23], Denkena et al. [24]).

The purchase of a D-Wave machine costs several million US dollars,
but currently D-Wave provides users with computing time on multi-
ple D-Wave computers distributed around the world within the Leap
environment. The use of the new technology for optimization tasks
requires an answer to the question whether the efficiency of computing
on a quantum computer is significantly better than classical computers
based on silicon systems.

In practice, the tasks formulated for a quantum machine implement-
ing quantum annealing take the form of an Ising or QUBO model, where
the translation of problems between these models is trivial. The Ising
model is used in statistical mechanics and the criterion function has the
following form:

𝐸𝐼𝑠𝑖𝑛𝑔(𝑠) =
𝑁
∑

𝑖=1
ℎ𝑖𝑠𝑖 +

𝑁
∑

𝑖=1

𝑁
∑

𝑗=𝑖+1
𝐽𝑖,𝑗𝑠𝑖𝑠𝑗 , (1)

where 𝑠𝑖, 𝑖 = 1, 2,… , 𝑁 express spins with the values +1 and −1,
while the linear coefficients corresponding to qubit deviations are ℎ𝑖,
the quadratic coefficients corresponding to the coupling forces are
𝐽𝑖,𝑗 . On the other hand, in the QUBO model, the function subject to
minimization takes the form

𝑓 (𝑥) =
𝑁
∑

𝑖=1
𝑄𝑖,𝑖𝑥𝑖 +

𝑁
∑

𝑖=1

𝑁
∑

𝑗=𝑖+1
𝑄𝑖,𝑗𝑥𝑖𝑥𝑗 , (2)

where 𝑄 is an upper-triangular matrix of size 𝑁 × 𝑁 of real weights,
whereas 𝑥 is a vector of binary variables.

QUBO is an unconstrained model, which means that in practice all
constraints of the problem must be included in the objective function.
Some of the Leap Hybrid solvers can handle constraints natively – for
them the translation of the constraints problem to the unconstrained
one is done inside the solver. For such a model – specifically for
LeapHybridCQMSampler (Constrained Quadratic Model, CQM) – the
presented work below is dedicated. The problem formulation for the
CQM model takes the form of minimization:
𝑁
∑

𝑖=1
𝑎𝑖𝑥𝑖 +

𝑁
∑

𝑖=1

𝑁
∑

𝑗=𝑖+1
𝑏𝑖,𝑗𝑥𝑖𝑥𝑗 + 𝑐, (3)

subject to constraints:
𝑁
∑

𝑖=1
𝑎(𝑚)𝑖 𝑥𝑖 +

𝑁
∑

𝑖=1

𝑁
∑

𝑗=𝑖+1
𝑏(𝑚)𝑖,𝑗 𝑥𝑖𝑥𝑗 + 𝑐(𝑚) ∝ 0, 𝑚 = 1, 2,… ,𝑀 (4)

where 𝑥𝑖, 𝑖 = 1, 2,… , 𝑁 can be binary, integer or real variables, 𝑎𝑖, 𝑏𝑖,𝑗 , 𝑐,
𝑖, 𝑗 = 1, 2,… , 𝑁 , are real values, whereas relation ∝∈ {≥,≤,=} and the
number of constraints 𝑀 is always an integer.

The tasks formulated to be solved by the D-Wave quantum computer
must be in the form of the Constrained Quadratic Model (CQM) [25]
and minimization of the objective function. In the case of the problem
under consideration, it is a constrained integer linear programming
task – then it is possible to use the LeapHybridCQMSampler solver
for its solution that implements quantum annealing in hardware. The
CQM solver runs with an Advantage [26–28] backend for the quantum
portion of the quantum–classical hybrid solver. Advantage QPUs are
based on the Pegasus graph topology [29] with size P16 containing at
least 5,000 qubits with 15 couplers per qubit, totaling at least 35,000
couplers.

3. Solution method

Solutions to the WNT problem can be represented by permutations
of the elements of the  job set. Let 𝛷 be the set of all such per-
mutations. Cost (value of the objective function) of the permutation
𝜋 ∈ 𝛷, 𝐹 (𝜋) =

∑𝑛
𝑖=1 𝑤𝜋(𝑖)𝑈𝜋(𝑖), where the moment of completion of job

𝜋(𝑖) ∈  , 𝐶𝜋(𝑖) =
∑𝑖

𝑗=1 𝑝𝜋(𝑖), for 𝑖 = 1, 2,… , 𝑛. The considered problem
of minimizing the sum of costs of tardy jobs comes down to finding the
optimal permutation 𝜋∗ ∈ 𝛷 that is one for which 𝐹 (𝜋∗) = min{𝐹 (𝛽) ∶
247

𝛽 ∈ 𝛷}.
Branching strategy. The process of browsing the elements of a solution
set 𝛷 will be represented by directed solution tree . The root of the
ree (the only node at level zero) is any 𝜋0 ∈ 𝛷 (starting) permutation
n which all jobs are free. From the root one can generate 𝑛 new nodes
permutations) on the first level. Each of them is created by fixing one
ob to the 𝑛th position. Likewise, with any first-level permutations by
etting a free job in free (𝑛− 1)th position, there can be generated n−1

new permutations making up level 2 of the tree. Hence, a full tree has 𝑛
levels. At the last 𝑛th level of the tree, there are 𝑛! permutations (nodes)
and in each of them all jobs are fixed.

If 𝛽 permutation was generated from 𝜋 by setting a free job on a
free position, then the pair (𝜋, 𝛽) creates an arc in the  tree. By (𝜋)
we denote the subtree in , in which the root is the node 𝜋.

Any node 𝜋 from ℎth level (ℎ = 0, 1, 2,… , 𝑛) in the solution tree 
s characterized by a set and a sequence of free jobs. Let us denote the
equences of free jobs as
 = (𝜋(1), 𝜋(2),… , 𝜋(𝑡)), (5)

and fixed jobs

𝜋 = (𝜋(𝑡 + 1), 𝜋(𝑡 + 2),… , 𝜋(𝑛)), (6)

where 𝑡 = 𝑛 − ℎ is the last free position in permutation 𝜋. Therefore,
ermutation 𝜋 = (𝜋, 𝜋 ) is a concatenation of subpermutations 𝜋 and
 . A set

(𝜋) = {𝜋(1), 𝜋(2),… , 𝜋(𝑡)} (7)

ontains free jobs in a permutation 𝜋.
Let ℎ be a certain level of the  tree. Generating from 𝜋 a new

ermutation (the node at the (ℎ+1)th level of the tree) relies in de-
ermining, on position 𝑡, in 𝛽 one free job from (𝜋) set. The jobs are
nserted into the 𝑡 position by making the appropriate insert -type move
a detailed description of this move is provided in (Wodecki [30]).
f 𝛽 is generated by setting the free job 𝜋(𝑘) (𝑘 ∈ {1, 2,… , 𝑡} is a
osition number) on position 𝑡, then an arc(𝜋, 𝛽) is added to the tree
. In every successor of 𝛽 (of permutation from (𝛽)) the job 𝜋(𝑘)

s fixed to position 𝑡. The solution to the WNT problem comes down
o determining the node in the  tree (permutation) of the minimum
alue of the cost function. In each node 𝜋 of the tree  free jobs
rom the set (𝜋) are candidates to be fixed to the last free position.
herefore, |(𝜋)| nodes can be generated directly from 𝜋.

ranching rule. The order in which candidates are selected to be deter-
ined has a significant impact on the eventual rejection of the subtree,

n the algorithm based on the B&B scheme. As a rule, such candidates
re selected in such a way that the algorithm determines the best
olution as soon as possible. In practice, the most common choice is
he node for which the lower estimate of the objective function value
s the smallest.

The basic elements of the presented method of solving the WNT
roblem are algorithms for determining the lower and upper bounds
f the value of the objective function. They have a direct impact on
he number of generated nodes of the solution tree, and thus on the
omputation time. The lower bound of the objective function value at
he node 𝜋 of the solution tree  is

𝐵𝜋 =
𝑛
∑

𝑖=𝑡+1
(𝑤𝜋(𝑖)𝑈𝜋(𝑖)) + 𝐿𝐵(𝜋) (8)

here 𝐿𝐵(𝜋) is the lower bound of the objective function for the free
obs from the set (𝜋).

Similarly, the upper bound

𝐵𝜋 =
𝑛
∑

𝑖=𝑡+1
(𝑤𝜋(𝑖)𝑈𝜋(𝑖)) + 𝑈𝐵(𝜋) (9)

here 𝑈𝐵(𝜋) is the upper bound of the objective function for the free
obs from the set (𝜋). The use of an upper bound allows the B&B to
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prune active nodes that have larger lower bound values, reducing the
size of the searched region and shortening the computing time.

In order to determine the value of 𝐿𝐵(𝜋) and 𝑈𝐵(𝜋) we use the
sampler of the quantum computer by the D-Wave company performing
hardware quantum annealing. However, its application requires formu-
lation of the problem of minimizing the sum of penalties for tardy jobs
from the set (𝜋) in the form of a square discrete optimization problem
with constraints (CQM, Constrained Quadratic Model). We present this
transformation below.

3.1. Task formulation for the D-wave machine

The tasks formulated to be solved by the D-Wave quantum computer
must be in the form of the Constrained Quadratic Model (CQM) and
minimization of the objective function. In the case of the problem
under consideration, it is a constrained integer linear programming task
— then it is possible to use the LeapHybridCQMSampler solver for its
solution that implements quantum annealing in hardware.

To simplify the notation, let us assume that in the node (𝜋)
free jobs from the set (𝜋) = {𝜋(1), 𝜋(2),… , 𝜋(𝑡)} are numbered with
consecutive numbers from 1 to 𝑡 (𝑡 ≤ 𝑛) such that 𝑑𝑖 ≤ 𝑑𝑖+1, 𝑖 =
1, 2,… , 𝑡−1 (i.e., according to the Earliest Due Date, EDD rule). Then, the
minimization of the objective function of the WNT problem considered
in the work can be formulated equivalently:

min
𝑡

∑

𝑖=1
𝑤𝑖𝑈𝑖 = min

( 𝑡
∑

𝑖=1
𝑤𝑖 −

𝑡
∑

𝑖=1
𝑤𝑖 +

𝑡
∑

𝑖=1
𝑤𝑖𝑈𝑖

)

=

= −max

[

−

( 𝑡
∑

𝑖=1
𝑤𝑖 −

𝑡
∑

𝑖=1
𝑤𝑖 +

𝑡
∑

𝑖=1
𝑤𝑖𝑈𝑖

)]

=

=
𝑡

∑

𝑖=1
𝑤𝑖 − max

( 𝑡
∑

𝑖=1
𝑤𝑖 −

𝑡
∑

𝑖=1
𝑤𝑖𝑈𝑖

)

=

=
𝑡

∑

𝑖=1
𝑤𝑖 − max

𝑡
∑

𝑖=1
𝑤𝑖(1 − 𝑈𝑖).

The first element ∑𝑡
𝑖=1 𝑤𝑖 of the above expression is a constant, and

the determination of the second comes down to solving the problem
1||max

∑

𝑤𝑖(1 − 𝑈𝑖) consisting in maximizing the weighted number of
tasks from the set (𝜋) executed on time (Weighted Number of On-time
jobs problem, abbreviated toWNO). As in Lawler and Moore’s work
(Lawler and Moore [31]) – (see also M’Hallah and Bulfin [19]) – it can
be formulated as follows:

max
𝑡

∑

𝑖=1
𝑤𝑖𝑥𝑖 (10)

with constraints:
𝑝1𝑥1 ≤ 𝑑1,
𝑝1𝑥1 + 𝑝2𝑥2 ≤ 𝑑2,
𝑝1𝑥1 + 𝑝2𝑥2 + 𝑝3𝑥3 ≤ 𝑑3,

⋮
𝑝1𝑥1 + 𝑝2𝑥2 + … + 𝑝𝑡𝑥𝑡 ≤ 𝑑𝑡,

(11)

𝑥𝑖 ∈ {0, 1}, 𝑖 = 1, 2,… , 𝑡. (12)

The variable 𝑥 = (𝑥1, 𝑥2,… , 𝑥𝑡) has the following interpretation: if
𝑥𝑖 = 1, then job 𝑖 is executed on time, i.e., it finishes before its due
date 𝑑𝑖. Otherwise, 𝑥𝑖 = 0 the job is late (tardy).

So, the value of the objective function (10) is the exact weighted
number of jobs performed on-time. Regarding constraints, setting ac-
cording to the EDD rule guarantees that if for job 𝑖, 𝑥𝑖 = 1 (it is on
time), i.e., it satisfies the 𝑖th constraint from (11), it also satisfies all
subsequent constraints.

This is an NP-hard problem (see, e.g., M’Hallah and Bulfin [19]).
On a quantum machine, we calculate its upper and lower bounds (see
Fig. 1; the figure is illustrative – the problem is not continuous – the so-
lutions mean individual solutions to the problem, here: permutations).
They will be used to designate the constraints of 𝐿𝐵(𝜋) and 𝑈𝐵(𝜋)
respectively, in expressions (8) and (9).
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Fig. 1. Idea of the quantum lower and upper bound calculation.

3.2. Calculating the upper bound of the WNO problem on a D-wave ma-
chine

For a dual WNO problem, defined in (10)–(12), we use the Lagrange
relaxation method. The Lagrange function with a vector of real multi-
pliers 𝑢 = (𝑢1, 𝑢2,… , 𝑢𝑡), 𝑢𝑖 ≤ 0, 𝑖 ∈  , for a vector of binary variables
𝑥 = (𝑥1, 𝑥2,… , 𝑥𝑡), takes the form:

𝐿(𝑥, 𝑢) =
𝑡

∑

𝑖=1
𝑤𝑖𝑥𝑖 + 𝑢1( 𝑝1𝑥1 − 𝑑1

⏟⏞⏞⏟⏞⏞⏟
≤0 for feasible

) + 𝑢2(𝑝1𝑥1 + 𝑝2𝑥2 − 𝑑2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤0 for feasible

)+

… + 𝑢𝑡(𝑝1𝑥1 + 𝑝2𝑥2 +⋯ + 𝑝𝑡𝑥𝑡 − 𝑑𝑡
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤0 for feasible solutions

) = (13)

= 𝑥1(𝑤1 + 𝑢1𝑝1 + 𝑢2𝑝1 +⋯ + 𝑢𝑡𝑝1) + 𝑥2(𝑤2 + 𝑢2𝑝2 + 𝑢3𝑝2 +⋯ + 𝑢𝑡𝑝2)+

… + 𝑥𝑡(𝑤𝑡 + 𝑢𝑡𝑝𝑡) −
𝑡

∑

𝑖=1
𝑢𝑖𝑑𝑖 =

𝑡
∑

𝑖=1
𝑥𝑖

(

𝑤𝑖 + 𝑝𝑖
𝑡

∑

𝑗=𝑖
𝑢𝑗

)

−
𝑡

∑

𝑖=1
𝑢𝑖𝑑𝑖.

Let

𝐿𝑖(𝑥𝑖, 𝑢) = 𝑥𝑖

(

𝑤𝑖 + 𝑝𝑖
𝑡

∑

𝑗=𝑖
𝑢𝑗

)

, (14)

then

𝐿(𝑥, 𝑢) =
𝑡

∑

𝑖=1
𝐿𝑖(𝑥𝑖, 𝑢) −

𝑡
∑

𝑖=1
𝑢𝑖𝑑𝑖

⏟⏟⏟
independent of 𝑥

whereby, maximization of 𝐿(𝑥, 𝑢) with respect to individual variables
𝑥𝑖, for fixed values of 𝑢𝑖, can be performed independently.

Let us note that for any 𝑢𝑖 ≤ 0, 𝑖 = 1, 2,… , 𝑡 and the optimal
solution of 𝑥∗ to the WNO problem with the objective function (10),
the following lemma applies:

Remark 1. For any value 𝑢𝑖 ≤ 0, 𝑖 = 1, 2,… , 𝑡 of the Lagrange
multipliers, the value 𝐿(𝑥, 𝑢) of the Lagrangian function is an upper
bound on the optimal objective function value ∑𝑡

𝑖=1 𝑤𝑖𝑥∗𝑖 of the WNO
problem.

Proof. Let

𝐴 = {𝑥 = (𝑥1, 𝑥2,… , 𝑥𝑡) ∶ 𝑥𝑖 ∈ {0, 1}, 𝑖 = 1, 2,… , 𝑡},

𝐵 = {𝑥 = (𝑥1, 𝑥2,… , 𝑥𝑡) ∶ 𝑥 ∈ 𝐴

and
𝑖

∑

𝑗=1
𝑥𝑗𝑝𝑗 ≤ 𝑑𝑖, 𝑖 = 1, 2,… , 𝑡},

𝑈 = {𝑢 = (𝑢 , 𝑢 ,… , 𝑢 ) ∶ 𝑢 ∈ R, 𝑢 ≤ 0, 𝑖 = 1, 2,… , 𝑡}.
1 2 𝑡 𝑖 𝑖
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Then, for every sequence 𝑢 ∈ 𝑈 there is
𝑡

∑

𝑖=1
𝑤𝑖𝑥

∗
𝑖 ≤ max

𝑥∈𝐵
𝐿(𝑥, 𝑢) ≤ max

𝑥∈𝐴
𝐿(𝑥, 𝑢) = 𝑈𝐵(𝑢),

which results directly from the form (13) (to ∑𝑡
𝑖=1 𝑤𝑖𝑥𝑖 we add non-

negative values, i.e., the products of non-positive 𝑢𝑖 and non-positive
∑𝑖

𝑗=1 𝑥𝑗𝑝𝑗 − 𝑑𝑖) and the fact that the set 𝐵 ⊆ 𝐴 which makes the
aximum after 𝑥 ∈ 𝐴 the same or greater than after 𝑥 ∈ 𝐵. Therefore
𝑡

∑

𝑖=1
𝑤𝑖𝑥

∗
𝑖 ≤ min

𝑢∈𝑈
𝑈𝐵(𝑢). (15)

Using the Lemma 1 (inequality (15)) we obtain
𝑡

𝑖=1
𝑤𝑖𝑥

∗
𝑖 ≤ min

𝑢∈𝑈
max
𝑥∈𝐴

𝐿(𝑥, 𝑢) =

= min
𝑢∈𝑈

{ 𝑡
∑

𝑖=1
max

𝑥𝑖∈{0,1}
𝐿𝑖(𝑥𝑖, 𝑢) −

𝑡
∑

𝑖=1
𝑢𝑖𝑑𝑖

}

. (16)

t follows from the above inequality that

𝐵𝑜𝑛−𝑡𝑖𝑚𝑒 = min
𝑢∈𝑈

{ 𝑡
∑

𝑖=1
max

𝑥𝑖∈{0,1}
𝐿𝑖(𝑥𝑖, 𝑢) −

𝑡
∑

𝑖=1
𝑢𝑖𝑑𝑖

}

(17)

s the upper bound of the optimal value of the maximized objective
unction ∑𝑡

𝑖=1 𝑤𝑖𝑥∗𝑖 for the WNO problem.
In turn, to compute the upper bound (17) of the Lagrange function

𝐵𝑜𝑛−𝑡𝑖𝑚𝑒 on the D-Wave computer (the tree is built and searched
n a regular, silicon computer but the bounds are calculated using
quantum computer), we calculate the values of the vector 𝑢 using

uantum annealing by solving the following CQM problem:

min
𝑢∈𝑈,𝑥∈𝐴

{ 𝑡
∑

𝑖=1
𝐿𝑖(𝑥𝑖, 𝑢) −

𝑡
∑

𝑖=1
𝑢𝑖𝑑𝑖

}

, (18)

with constraints

𝐿𝑖(𝑥𝑖, 𝑢) ≥ 𝐿𝑖(0, 𝑢), (19)

and

𝐿𝑖(𝑥𝑖, 𝑢) ≥ 𝐿𝑖(1, 𝑢), (20)

for 𝑢𝑖 < 0, 𝑖 = 1, 2,… , 𝑡.
The 𝑥𝑖 variables take two values of 0 or 1. Therefore, the max-

imization over the vector 𝑥 in the expression (17) is replaced by
(18) criterion and constraints (19) and (20), which are 2𝑡 in total.
The resulting feasible solution with respect to 𝑥 variable is optimal
maximal) because it satisfies constraints (18) and (19), thus satisfying
15).

Formally, 𝑥 may not be a feasible solution (and therefore a max-
mum solution, due to the (19)–(20) constraints) and we should de-
ermine an admissible, let us call it 𝑥′, solution on the CPU after

completing the calculations in the D-Wave environment. This can be
done independently for each 𝑥𝑖 in time 𝑂(𝑛2) according to the formula
14) by deciding whether to choose 0 or 1, obtaining maximum 𝐿𝑖(𝑥𝑖, 𝑢)
or each 𝑖 = 1, 2,… , 𝑡, 𝑡 ≤ 𝑛. However, our experiments with the
eapHybridSampler solver always produced a feasible 𝑥.

The Lagrange function multipliers vector 𝑢 = (𝑢1, 𝑢2,… , 𝑢𝑡) formally
onsists of real numbers. It is uncomfortable to code them in the CQM
odel as a continuous-integer approach, that is why we decide to use

n integers-value 𝑢 vector and divide it by a power of 10 next (e.g., by
000) to achieve a float number with fixed accuracy (e.g., 0.001).

Summing up, the calculation of 𝑈𝐵𝑜𝑛−𝑡𝑖𝑚𝑒 value according to (17)
equires the determination of the optimal values of the variables 𝑥𝑖, 𝑖 =
1, 2,… , 𝑡. For each 𝑥𝑖, 𝑖 = 1, 2,… , 𝑡, optimization with respect to 𝑥𝑖 can
be performed on a CPU independently by checking two values of 𝑥𝑖,
.e., 0 or 1. Optimization with respect to 𝑢 may be approximate (because
249

or any 𝑢𝑖 ≤ 0 the result is an upper bound, see Remark 1).
.3. Objective function bounds in the B&B method for the WNT problem

In accordance with (8) the lower bound of the WNT problem is

𝐵𝜋 =
𝑛
∑

𝑖=𝑡+1
𝑤𝜋(𝑖)𝑈𝜋(𝑖) + 𝐿𝐵(𝜋)

Let us assume that 𝐿𝐵𝜋 is designated on a D-Wave machine with the
use of 𝑄𝑢𝑎𝑛𝑡𝑢𝑚𝐴𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔𝐿𝐵(𝜋) function, therefore

𝐵𝜋 = 𝑄𝑢𝑎𝑛𝑡𝑢𝑚𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒𝐿𝐵(𝜋) =
𝑛
∑

𝑖=𝑡+1
𝑤𝜋(𝑖)𝑈𝜋(𝑖)+

+

( 𝑡
∑

𝑖=1
𝑤𝑖 − 𝑈𝐵𝑜𝑛−𝑡𝑖𝑚𝑒

)

. (21)

where 𝑈𝐵𝑜𝑛−𝑡𝑖𝑚𝑒 is defined in Eq. (17), and (
∑𝑡

𝑖=1 𝑤𝑖 −𝑈𝐵𝑜𝑛−𝑡𝑖𝑚𝑒) is the
ower bound of the objective function for the WNT problem for the set
f free jobs (𝜋).

Similarly, problem formulation (10)–(12), as linear programming,
an directly apply the LeapHybridCQMSampler solver for hardware

quantum annealing on the D-Wave machine. Let 𝐿𝐵𝑜𝑛−𝑡𝑖𝑚𝑒 be the value
of this solution. Since on a quantum machine we do not have a
guarantee of the optimal solution (due to the probabilistic nature of
quantum computing), 𝐿𝐵𝑜𝑛−𝑡𝑖𝑚𝑒 is therefore the lower bound of the
optimal value of the objective function for the WNO problem. Hence,
according to (9) an upper bound

𝑈𝐵𝜋 =
𝑛
∑

𝑖=𝑡+1
𝑤𝜋(𝑖)𝑈𝜋(𝑖) + 𝑈𝐵(𝜋)

is determined on the D-Wave by a 𝑄𝑢𝑎𝑛𝑡𝑢𝑚𝐴𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔𝑈𝐵(𝜋) procedure,

𝑈𝐵𝜋 = 𝑄𝑢𝑎𝑛𝑡𝑢𝑚𝐴𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔𝑈𝐵(𝜋) =
𝑛
∑

𝑖=𝑡+1
𝑤𝜋(𝑖)𝑈𝜋(𝑖)+

+

( 𝑡
∑

𝑖=1
𝑤𝑖 − 𝐿𝐵𝑜𝑛−𝑡𝑖𝑚𝑒

)

. (22)

Both procedures for determining the lower and upper bounds of the
WNT problem objective function at the node 𝜋 of the solution tree 
will be used in the B&B algorithm controlled by quantum annealing for
solving the WNT problem.

4. Exact algorithm controlled by quantum annealing

In this section, we introduce the pseudocode of a hybrid exact
algorithm solving the WNT problem. The key elements – lower and
upper bounds – are calculated with using quantum annealing on the
D-Wave computer. The identity permutation 𝜋0 = (1, 2, 3,… , 𝑛) – a
feasible one, since all the permutations are feasible – was assumed as
the starting solution. The pseudocode is represented by the Algorithm
1.

Browsing the  solution tree uses the best-first strategy (due to
upper bounds of nodes) with a priority queue implemented in a binary
heap structure (Heap variable). In the nodes the following four are
stored: (permutation, number of free jobs, lower bound, and value of the
objective function). On line 14 of the algorithm, the candidate jobs
are inserted into the last free position 𝑡. Then, on line 15, the lower
bound is calculated. If its value is less than the best cost function value
of a solution (line 16), then the best solution in the (𝜋) subtree is
determined (in line 17) with using a quantum computer. It is worth
noting that the ceiling (⌈𝐿𝑜𝑐𝑎𝑙𝐿𝐵⌉) from the value of the lower bound
is considered, because the objective function has integer values. In lines
18 and 19, the best solution found so far is modified if necessary.
Having performed these calculations, a new node is generated (the root
of the subtree), which is added to the priority queue Heap on line 20.

The result of the algorithm’s performance is the optimal permutation
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Algorithm 1: QAdB&B
Input : 𝜋0← (1, 2,… , 𝑛) – starting solution;

𝑟𝑜𝑜𝑡← 𝑓𝑎𝑙𝑠𝑒 – binary variable, arbitrarily 𝑓𝑎𝑙𝑠𝑒
Output: 𝜋∗ – optimal solution;

1 Heap ← ∅: priority queue of partial solutions sorted in
ascending order by their upper bounds 𝐿𝑜𝑐𝑎𝑙𝑈𝐵;

2 if root = false then
3 𝜋∗ ← 𝜋0;
4 Put(Heap, (𝜋0, 𝑛, 0, 𝐹 (𝜋0))); 0 is an initial lower bound
5 else
6 𝜋𝐿𝑜𝑐𝑎𝑙𝑈𝐵 ← arg(𝑄𝑢𝑎𝑛𝑡𝑢𝑚𝐴𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔𝑈𝐵(𝜋));
7 𝜋∗ ← argmin{𝐹 (𝜋𝐿𝑜𝑐𝑎𝑙𝑈𝐵), 𝐹 (𝜋0)};
8 Put(Heap,(𝜋0, 𝑛, 𝑄𝑢𝑎𝑛𝑡𝑢𝑚𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒𝐿𝐵(𝜋0),𝐹 (𝜋∗)));
9 while Heap ≠ ∞ do
10 Get(Heap, (𝜋, t, 𝐿𝐵𝜋 , 𝑈𝐵𝜋));
11 if ⌈𝐿𝐵𝜋⌉ < 𝐹 (𝜋∗) then
12 Designate the set 𝐾𝜋 – jobs determined on 𝑡-th position;
13 for 𝑗 ∈ 𝐾𝜋 do
14 Swap(𝜋, 𝜋−1(𝑗), 𝑡); this procedure swaps jobs on

positions 𝜋−1(𝑗) and 𝑡 in 𝜋 permutation
15 𝐿𝑜𝑐𝑎𝑙𝐿𝐵 ← 𝑄𝑢𝑎𝑛𝑡𝑢𝑚𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒𝐿𝐵(𝜋);
16 if ⌈𝐿𝑜𝑐𝑎𝑙𝐿𝐵⌉ < 𝐹 (𝜋∗) then
17 𝜋𝐿𝑜𝑐𝑎𝑙𝑈𝐵 ← arg(𝑄𝑢𝑎𝑛𝑡𝑢𝑚𝐴𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔𝑈𝐵(𝜋));
18 if min{𝐹 (𝜋𝐿𝑜𝑐𝑎𝑙𝑈𝐵), 𝐹 (𝜋)}) < 𝐹 (𝜋∗) then
19 𝜋∗ ← argmin{𝐹 (𝜋𝐿𝑜𝑐𝑎𝑙𝑈𝐵), 𝐹 (𝜋)};
20 Put(Heap, (𝜋, 𝑡 − 1, 𝐿𝑜𝑐𝑎𝑙𝐿𝐵, 𝐹 (𝜋𝐿𝑜𝑐𝑎𝑙𝑈𝐵));
21 Swap(𝜋, 𝑡, 𝜋−1(𝑗));

Table 1
Jobs’ parameter of wt10 instance.
𝑖 1 2 3 4 5 6 7 8 9 10

𝑝𝑖 25 81 71 87 64 82 7 76 95 31
𝑑𝑖 254 286 209 292 232 302 245 196 254 252
𝑤𝑖 5 6 2 9 4 7 4 1 8 2

𝜋∗. The 𝑟𝑜𝑜𝑡 switch determines whether to browse the root (𝑟𝑜𝑜𝑡 = 𝑡𝑟𝑢𝑒)
or start the analysis from the 1st level (for 𝑟𝑜𝑜𝑡 = 𝑓𝑎𝑙𝑠𝑒, arbitrarily).
The parameter 𝑟𝑜𝑜𝑡 was used in our experiments to generate 𝐿𝐵 and
𝐵, to not generate in the root. In the latter case, the analysis started

rom the first level (not zero) of the tree.
We illustrate the application of the QAdB&B quantum algorithm

n a small example. We consider the problem of scheduling ten jobs
𝑛 = 10) on a single machine with the parameters presented in Table 1.
ote that the data itself do not have to comply with the EDD rule,
ecause the renumbering of the jobs takes place in each node when
alculating the constraints for the dual problem.

As a starting solution of the QAdB&B algorithm there was adopted
n identical (natural) permutation of jobs 𝜋0 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).

It is the only node at the level ℎ = 0 of a solution tree . The set of free
jobs 𝜋 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, whereas the set of fixed jobs 𝜋 = ∅.
There was 𝜋∗ = 𝜋0 adopted, 𝑟𝑜𝑜𝑡 = 𝑓𝑎𝑙𝑠𝑒, lower bound value 𝐿𝐵𝜋 = 0
and the value of cost function 𝐹 (𝜋∗) = 26 was calculated.

By setting the free job on the last 10th position, there were 10 per-
mutations generated from the 𝜋 permutation — nodes of the  tree on
the 1st level (the underlined job belongs to the set of fixed jobs, whereas
the remaining jobs are free). For each of the 10 generated nodes, the
value of the objective function and the values of the lower and upper
bounds on the quantum machine are determined. The obtained results
are presented in Table 2. The following columns contain: the node of
the tree, the value of the lower bound (𝐿𝐵𝜋), and the value of the
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upper bound (𝑈𝐵𝜋). For comparison, the last two columns contain the
Table 2
Lower and upper bounds.

node 𝐿𝐵𝜋 (⌈𝐿𝐵𝜋⌉) 𝑈𝐵𝜋 𝐿𝐵𝑆𝑀 𝑈𝐵𝑆𝑀

𝜋1 17.5532 (18) 18 17.7037 (18) 29
𝜋2 14.4602 (15) 15 14.6129 (15) 30
𝜋3 14.4069 (15) 15 13.8355 (14) 26
𝜋4 17.0756 (18) – 17.2258 (18) 33
𝜋5 14.4091 (15) 15 13.8355 (14) 26
𝜋6 16.0670 (17) – 16.2222 (17) 26
𝜋7 17.8889 (18) – 18.0370 (19) 26
𝜋8 14.4056 (15) 15 13.8355 (14) 26
𝜋9 15.5568 (16) – 15.7096 (16) 26
𝜋10 14.4104 (15) 15 13.8355 (14) 26

values of the lower and upper bounds (𝐿𝐵𝑆𝑀 and 𝑈𝐵𝑆𝑀 , respectively)
determined by the SMB&B (Silicon Machine B&B) algorithm executed
on a classic computer with a silicon-based CPU.

In both algorithms (QAdB&B and SMB&B), the lowerbounds are
calculated based on the Lagrange relaxation in a floating point arith-
metic system. Since for any solution of the considered example, the
objective function value is an integer, ultimately the value of the lower
bound was assumed to be the smallest integer and not less than the
value of the lower bound (function ceiling ⌈ ⌉) determined by the
𝑄𝑢𝑎𝑛𝑡𝑢𝑚𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒𝐿𝐵 function. Integer values are shown in parentheses
(columns: 𝐿𝐵𝜋 and 𝐿𝐵𝑆𝑀 in Table 2).

It should be noted that already in the second of the generated
nodes 𝜋2, the value of the upper bound 𝑈𝐵𝜋2 = 15 determined by the
quantum algorithm, is the optimal value. It has a permutation of 𝜋∗

2 =
(7, 1, 9, 4, 6, 8, 3, 5, 10, 2) for which the value of the objective function
𝐹 (𝜋∗

2 ) = 15. Therefore, the following nodes: 𝜋4, 𝜋6, 𝜋7 and 𝜋9, for which
the value of the lower bound (calculated in the QAdB&B algorithm) is
not less than 𝑈𝐵𝜋2 = 15 are not considered, and in particular, no upper
bound for them is determined. The algorithm ends after generating all
the first level nodes, because the lower bound for each of these nodes
is not less than the optimal value 𝐹 (𝜋∗

2 ) = 15 determined in node 𝜋2.
The QAdB&B algorithm results, listed in Table 2, were also com-

pared with the results of the SMB&B algorithm. First, the values of the
lower bounds determined by both algorithms were compared. In the
case of the silicon algorithm, to compute the lower bound there was
used a very good Powell algorithm (Powell, 1964) for the implemented
continuous optimization. The obtained results are listed in Table 2
column 4. Only in 1 of 10 cases (node 𝜋7) is the ceiling value (rounded
to the nearest integer) from the lower bound set in the silicon algorithm
slightly better (greater) than the value set by the quantum algorithm.

It is interesting to note that at each node of the solution tree, both
the quantum and silicon algorithms solved the same subproblem. In
the case of the lower bound, it was the optimization of the Lagrange
function (by various methods: quantum annealing on the QPU and the
Powell method on the CPU). For the upper bound, the QPU performed
constant-time quantum annealing. In turn, the CPU in constant time
was able to calculate only the value of the objective function of a
single solution in the tree node. Hence the differences in the determined
bounds values.

In the full run of the QAdB&B algorithm, 10 tree nodes were
generated, and the optimal solution was obtained in the second of
the generated nodes, 𝜋2 (the algorithm generated the whole tree,
calculations were not stopped after obtaining the optimum). However,
the silicon algorithm generated as many as 1006 nodes, but the optimal
solution was found only in the 207-th node.

The average runtime of a single iteration of the QAdB&B algorithm
on the QPU is 15.26 ms and the average deviation of the runtime is only
0.034. Undoubtedly, it seems that the time of determining the lower
and upper bounds does not depend on the data (i.e., the number of free
jobs) and in practice can be considered as constant for this size of data.
The total computation time on the quantum computer was 254 ms, with

the optimal solution being obtained after less than 60 ms. In turn, the
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calculation time of the algorithm on a silicon computer is 5960 ms, and
the optimal solution was obtained after 5934 ms.

In summary, the QAdB&B algorithm running on a D-Wave environ-
ment generated about 100 times fewer solution tree nodes than the
silicon algorithm, and the computation time was over 23 times shorter.
Moreover, the quantum algorithm found the optimal solution much
faster, both in terms of the time and the number of generated tree
nodes.

5. Computational experiments

Two types of tests are presented in this section. The results of the
QAdB&B (Quantum Annealing-driven B&B) algorithm, for instances of
an average size (𝑛 ≤ 100), were compared with the results of the
MB&B (Silicon Machine B&B) exact algorithm ran on a classic silicon
omputer with a CPU. However, for examples of a large size (200 ≤
𝑛 ≤ 1000), the results were compared with the results determined by
the Gurobi software package. The proposed QAB&B algorithm was run
in two versions: HybridQAB&B in the LeapHybridSampler environment
using the CPU, GPU and QPU (and automatically defining tasks for
the quantum processor performing quantum annealing) and QAB&B in
the D-WaveSampler environment (using quantum annealing directly).
A discussion about QPU usage by LeapHybridSampler can be found in
the work of Stogiannos et al. [8].

Silicon-machine B&B (SMB&B) algorithm. The QAdB&B and SMB&B
algorithms differ, in addition to the runtime environments (CPU+QPU
ersus CPU), in the method of calculating the lower and upper bounds.
or the SMB&B, the upper bound value of 𝜋𝐿𝑜𝑐𝑎𝑙𝑈𝐵 is substituted as
𝐿𝑜𝑐𝑎𝑙𝑈𝐵 ← 𝜋 (lines 6 and 17 of Algorithm 1). In turn, with regard
o the lower bound in the algorithm SMB&B suboptimal values of the
oefficients of vector 𝑢 of the Lagrange function (13) are computed by
he Powell method [32] of continuous optimization (𝐿𝑜𝑐𝑎𝑙𝐿𝐵 in line
5 of Algorithm 1; also line 8). The algorithm for their determination
nds when the obtained improvement in the Lagrange function value
s not greater than the predetermined value of 10−6. In each iteration,
(𝑛2) values of the variables appearing in the Lagrange function are
etermined. In addition, the number of iterations of Powell’s algorithm
epends on the value of the data and the accuracy of the calculations.
lgorithm SMB&B was programmed in C# and ran on a computer with
3.4 GHz processor.

esults. The calculations were made on the well-known examples of
est data for the single machine scheduling problem with weights,
||

∑

𝑤𝑖𝑇𝑖, posted on the page OR-Library [33]. These are examples of
arious sizes and varying degrees of difficulty commonly used when
esting algorithms for solving single machine problems with weights.
he calculations were made on the selected 30 instances of medium
ize:

(a) 10 denoted by 𝑤𝑡40_011 −𝑤𝑡40_020 of size 𝑛 = 40,
(b) 10 denoted by 𝑤𝑡50_011 −𝑤𝑡50_020 of size 𝑛 = 50,
(c) 10 denoted by 𝑤𝑡100_011 −𝑤𝑡100_020 of size 𝑛 = 100,

nd 30 instances of a larger size (Uchroński [34]):

(c) 10 denoted by 𝑤𝑡200_021 − 025 and 𝑤𝑡200_071 −
𝑤𝑡200_075 of size 𝑛 = 200,

(d) 10 denoted by 𝑤𝑡500_046 − 050 and 𝑤𝑡500_091 −
𝑤𝑡500_095 of size 𝑛 = 500,

(e) 10 denoted by 𝑤𝑡1000_021 − 025 and 𝑤𝑡1000_046 −
𝑤𝑡1000_050 of size 𝑛 = 1000.

Additionally, a single instance wt_10 of the size 𝑛 = 10 (apart from
nstances with 𝑛 = 40) was presented in Table 5 for comparison. As part
f the computational experiments carried out, there were comparisons
ade of the lower values and upper bounds determined by the quantum
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nnealer with the values of the optimal, lower and upper bounds t
calculated on the silicon machine. The optimal values of the solutions
were obtained using the GUROBI software package by formulating the
WNT problem as linear programming.

The results of the experimental tests are presented in Table 3. The
first column contains the name and size of the example. The columns
contain the following values: lower bound 𝐿𝐵𝜋 (as well as ⌈𝐿𝐵𝜋⌉

integer value), upper bound 𝑈𝐵𝜋 , and runtimes QPU_ACCESS_TIME
and RUN_TIME of lower and upper bounds, respectively, calculated
in Leap Hybrid quantum computing environment (see D-Wave tim-
ing documentation [35]). Next two columns show the value of the
lower and upper bound set by the silicon computer, while the last
column CPU_TIME presents the time of determining the lower bound
on this computer. In the algorithm implemented on a silicon computer
(SMB&B), the value of the objective function for the permutation
generated according to the scheme of the B&B algorithm was adopted
as the upper bound. 8th column contains a CPU runtime of SMB&B
algorithm.

Since the values of the objective function considered in the work of
the WNT problem are integers, ultimately the value of the lower bound
was assumed to be the smallest integer not less than the calculated
value (ceiling ⌈ ⌉ function). These approximations are in parenthe-
ses in columns ’𝐿𝐵𝜋 (⌈𝐿𝐵𝜋⌉)’ for HybridQAdB&B and ’𝐿𝐵 (⌈𝐿𝐵⌉)’
or SMB&B. The QAdB&B algorithm was run with root consideration
𝑟𝑜𝑜𝑡 = 𝑡𝑟𝑢𝑒 – it can be skipped or not during the algorithm work,
epending on the 𝑟𝑜𝑜𝑡 variable).

Having performed the calculations, it turned out that the upper
ounds of the algorithm HybridQAdB&B (Hybrid because of running in
he D-Wave Leap environment) (𝑈𝐵𝜋 column in Table 3) determined
n the root of the solution tree are optimal values (they are marked
n bold). Using the Gurobi package, all the examples were solved and
he same optimal solution values were obtained as in the column 3.
hese values are definitely smaller (even more than 4 times smaller,
egarding the test example wt40_011) than those determined by the
ilicon CPU-based SMB&B algorithm (column 8). On the other hand,
he lower bounds set by both algorithms ( columns ’𝐿𝐵𝜋 ’ and ’𝐿𝐵’)
iffer little (due to the non-deterministic nature of the calculations),
lthough for more examples the SMB&B algorithm set bounds of a lower
alue. The computation time of the silicon SMB&B algorithm (column
PU_TIME) grows exponentially with increasing data size, whereas
he computation time of the HybridQAdB&B algorithm is practically
onstant (columns QPU_ACCESS_TIME and RUN_TIME) and is just over
5 ms on QPU and about 5 s as a RUN_TIME. Column 𝛿 presents
percentage gap between lower (⌈𝐿𝐵𝜋⌉) and upper bounds (𝑈𝐵𝜋)

obtained by HybridQAdB&B algorithm.
Table 4 presents the results of calculations for larger examples (for

𝑛 = 200, 500, 1000). The running time of the HybridQAdB&B algorithm
was limited because the review of the entire tree was impossible in
this case within the time limit of the D-Wave Leap computational
environment at our disposal under an academic license. The obtained
results of the HybridQAdB&B (de facto cut B&B) algorithm are therefore
approximate solutions. They were compared with the exact results
obtained using the Gurobi package. The meaning of the first 6 columns
is the same as in Table 3. The last 3 columns, for the results of the
Gurobi package, mean: the value of the obtained solution (𝑂𝑃𝑇 , opti-
mal), the calculation time RUN_TIME, and percentage 𝑔𝑎𝑝 in relation to
the value of the solution obtained with the HybridQAdB&B algorithm:
𝑔𝑎𝑝 = 𝑈𝐵𝜋−𝑂𝑃𝑇

𝑂𝑃𝑇 ⋅ 100%.
Fig. 2 graphically presents the summary results included in the

Tables 3 and 4. The bar graph represents the average percentage rela-
tive error (gap) of the HybridQAdB&B algorithm, and the broken line
represents the average computation time. The values of relative errors
vary greatly. For the number of jobs 𝑛 = 40, 50, 100 the error is 0 (the
solutions are optimal). For 𝑛 = 200 this error is 0.177. If we increase
the number of jobs by 2.5 times (to 𝑛 = 500), the error increases almost
18 times, to a value of 3.141. However, for the number of jobs 𝑛 = 1000
he gap is 1.272, so in relation to the number of jobs 𝑛 = 200 it increases
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Table 3
Results of computational experiments (optimal solutions).

Instance HybridQAdB&B SMB&B

𝐿𝐵𝜋 (⌈𝐿𝐵𝜋⌉) 𝑈𝐵𝜋 QPU_ACCESS_TIME [ms] RUN_TIME [s] 𝛿 [%] 𝐿𝐵 (⌈𝐿𝐵⌉) 𝑈𝐵 CPU_TIME [ms]

wt40_011 32.07 (33) 34 15.29 5.08 2.94 33.49 (34) 137 366
wt40_012 35.71 (36) 39 15.34 5.00 7.69 36.83 (37) 114 328
wt40_013 46.90 (47) 50 15.35 5.00 6.00 47.54 (48) 166 331
wt40_014 34.17 (35) 36 15.28 5.00 2.78 34.41 (35) 130 324
wt40_015 48.72 (49) 51 15.33 5.00 3.92 47.49 (48) 149 324
wt40_016 99.93 (100) 105 15.32 5.41 4.76 99.24 (100) 167 324
wt40_017 100.68 (101) 103 15.34 5.21 1.94 100.09 (101) 168 324
wt40_018 101.69 (102) 103 15.34 5.00 0.97 102.18 (103) 174 329
wt40_019 96.67 (97) 99 15.33 5.09 2.02 97.12 (98) 170 326
wt40_020 87.08 (88) 89 15.33 5.43 1.12 86.90 (87) 201 326

average 15.32 5.12 3.41 330

wt50_011 55.46 (56) 59 15.33 5.31 5.08 56.97 (57) 160 593
wt50_012 43.01 (44) 46 15.20 5.00 4.35 44.97 (45) 177 593
wt50_013 62.73 (63) 65 15.33 5.02 3.08 60.48 (61) 181 583
wt50_014 70.20 (71) 75 15.34 5.35 5.33 72.13 (73) 174 619
wt50_015 54.29 (55) 57 15.27 5.46 3.51 56.63 (57) 132 599
wt50_016 107.21 (108) 110 15.33 5.00 1.82 107.21 (108) 249 592
wt50_017 88.03 (89) 91 15.33 5.15 2.20 87.54 (88) 221 598
wt50_018 107.36 (108) 109 15.33 5.33 0.92 106.90 (107) 247 584
wt50_019 110.25 (111) 112 15.35 5.29 0.89 111.13 (112) 228 589
wt50_020 89.93 (90) 93 15.34 5.05 3.23 90.39 (91) 185 758

average 15.31 5.20 3.04 610

wt100_011 119.14 (120) 127 15.29 5.32 5.51 121.81 (122) 186 4193
wt100_012 145.48 (146) 154 15.34 5.34 5.19 150.42 (151) 189 4189
wt100_013 115.46 (116) 125 15.35 5.36 7.20 122.86 (123) 171 4098
wt100_014 106.62 (107) 116 15.35 5.34 7.76 112.14 (113) 148 4165
wt100_015 124.57 (125) 134 15.30 5.00 6.72 128.54 (129) 188 4209
wt100_016 233.25 (234) 237 15.36 5.08 1.27 234.23 (235) 317 4169
wt100_017 191.64 (192) 195 15.36 5.49 1.54 189.72 (190) 260 4367
wt100_018 273.63 (274) 278 15.33 5.00 1.44 269.09 (270) 330 4119
wt100_019 245.48 (246) 249 15.28 5.46 1.20 246.65 (247) 348 4157
wt100_020 224.57 (225) 227 15.36 5.00 0.88 219.14 (220) 303 4298

average 15.33 5.24 3.87 4196
Fig. 2. HybridQAdB&B efficiency and runtime comparison for different instance sizes 𝑛.
only by about 7 times. Based on the calculations performed, it cannot be
concluded that as the size of the examples (number of jobs) increases,
252
the average relative error also increases. In general, the average total
RUN_TIME computation times increase as the number of jobs increases
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Table 4
Results of computational experiments (with limited computation time).

Instance HybridQAdB&B with time limit Gurobi 𝑔𝑎𝑝 [%]

𝐿𝐵𝜋 (⌈𝐿𝐵𝜋⌉) 𝑈𝐵𝜋 QPU_ACCESS_TIME [ms] RUN_TIME 𝛿 [%] 𝑂𝑃𝑇 RUN_TIME [ms]

𝑤𝑡200_021 681.25 689 16.02 5.19 1.13 687 50 0.29
𝑤𝑡200_022 767.26 773 16.03 5.29 0.74 772 60 0.13
𝑤𝑡200_023 757.16 764 15.91 5.34 0.90 764 110 0.00
𝑤𝑡200_024 726.37 734 16.00 5.16 1.04 734 60 0.00
𝑤𝑡200_025 719.06 724 15.99 5.00 0.68 724 50 0.00
𝑤𝑡200_071 424.98 435 31.93 5.09 2.30 435 40 0.00
𝑤𝑡200_072 372.71 382 16.02 5.00 2.43 381 30 0.26
𝑤𝑡200_073 448.38 463 16.05 5.06 3.16 460 50 0.65
𝑤𝑡200_074 451.45 461 31.98 5.36 2.07 459 70 0.44
𝑤𝑡200_075 409.00 418 16.04 5.18 2.15 418 60 0.00

average 19.20 5.17 1.66 58 0.18

𝑤𝑡500_046 1183.16 1407 15.98 5.20 15.91 1377 320 2.18
𝑤𝑡500_047 907.64 1356 16.00 5.64 33.07 1336 190 1.50
𝑤𝑡500_048 1289.80 1355 16.05 5.57 4.81 1323 420 2.42
𝑤𝑡500_049 1106.48 1388 16.04 5.28 20.28 1360 280 2.06
𝑤𝑡500_050 1062.24 1380 15.92 5.65 23.03 1357 370 1.69
𝑤𝑡500_091 366.35 424 16.05 5.16 13.60 404 660 4.95
𝑤𝑡500_092 394.66 428 16.00 5.35 7.79 417 310 2.64
𝑤𝑡500_093 296.42 398 16.02 5.81 25.52 386 270 3.11
𝑤𝑡500_094 361.21 468 16.00 5.32 22.82 446 350 4.93
𝑤𝑡500_095 316.65 411 16.02 5.20 22.96 388 290 5.93

average 16.01 5.42 18.98 346 3.14

𝑤𝑡1000_021 2277.87 3620 16.04 5.61 37.08 3603 1360 0.47
𝑤𝑡1000_022 3293.14 3560 16.02 5.59 7.50 3542 2130 0.51
𝑤𝑡1000_023 2745.88 3644 16.03 5.66 24.65 3618 1540 0.72
𝑤𝑡1000_024 2369.86 3462 31.93 5.60 31.55 3446 1290 0.46
𝑤𝑡1000_025 3435.10 3627 16.01 5.79 5.29 3590 1230 1.03
𝑤𝑡1000_046 1835.11 2858 16.00 5.93 35.79 2802 1770 2.00
𝑤𝑡1000_047 1849.36 2731 16.03 5.91 32.28 2688 1130 1.60
𝑤𝑡1000_048 2305.27 2807 15.91 5.86 17.87 2747 1850 2.18
𝑤𝑡1000_049 1770.87 2759 16.02 5.77 35.81 2719 3420 1.47
𝑤𝑡1000_050 2336.74 2693 16.02 5.88 13.23 2633 1470 2.28

average 17.60 5.76 24.11 1719 1.27
Table 5
LeapHybridSampler and DWaveSampler comparison.

Instance HybridQAdB&B – LeapHybridCQMSampler QAdB&B – DWaveSampler

𝐿𝐵𝜋 (⌈𝐿𝐵𝜋⌉) 𝑈𝐵𝜋 QPU_ACCESS_TIME [ms] RUN_TIME [s] 𝐿𝐵𝜋 (max{0, 𝐿𝐵𝜋}) 𝑈𝐵𝜋 QPU_ACCESS_TIME [ms]

wt10 14.46 (15) 15 31.98 5.07 −41.4886 (0) 32 15.91

wt40_011 32.07 (33) 34 15.29 5.08 −87.5467 (0) 161 16.04
wt40_012 35.71 (36) 39 15.34 5.00 −91.4260 (0) 122 16.05
wt40_013 46.90 (47) 50 15.35 5.00 −132.933 (0) 148 16.05
wt40_014 34.17 (35) 36 15.28 5.00 −85.579 (0) 105 15.93
wt40_015 48.72 (49) 51 15.33 5.00 −112.3733 (0) 148 15.94
wt40_016 99.93 (100) 105 15.32 5.41 −70.6645 (0) 211 15.96
wt40_017 100.68 (101) 103 15.34 5.21 −75.1634 (0) 178 15.93
wt40_018 101.69 (102) 103 15.34 5.00 −69.7733 (0) 182 15.95
wt40_019 96.67 (97) 99 15.33 5.09 −78.0840 (0) 178 15.95
wt40_020 87.08 (88) 89 15.33 5.43 −31.0918 (0) 216 15.94

average 15.32 5.12 15.97
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(with the exception of 𝑛 = 200). However, this increase is small, because
for the smallest examples (𝑛 = 40) the calculation time is 5.122 s, and
for the largest (𝑛 = 1000) the calculation time is 5.760 s The data size
increased by 25 times, and the computation time increased by only
about 0.6 s For data for which computational experiments were carried
out, it is practically independent of the size of the example.

Table 5, for examples with the number of tasks 𝑛 = 10 and
𝑛 = 40, presents the values of the lower and upper bounds of the
values of optimal solutions, QPU_ACCESS_TIME and RUN _TIME (for
DWaveSampler, the QPU_ACCESS_TIME time is the total computation
time on the QPU). The calculations were performed using two versions
of the QAdB&B algorithm: in the LeapHybridSampler environment and
DWaveSampler, the description of which is presented at the beginning
of this section. For the algorithm version LeapHybridSampler maximal
difference between upper and lower bounds 𝑈𝐵 − ⌈𝐿𝐵 ⌉ = 5 for
253

𝜋 𝜋 o
example wt40_016. Generally, it is small (𝑈𝐵𝜋 is the value of the
optimal solution). In turn, the calculations of the second version of
the algorithm, DWaveSampler, were performed directly using quantum
annealing, i.e. only on the QPU. The values of the lower limits 𝐿𝐵𝜋 are
etermined in this case in two stages: (i) the upper bound 𝑈𝐵𝑊𝑁𝑂 for
he WNO problem (maximizing ∑

𝑤𝑖(1 − 𝑈𝑖) is calculated), (ii) lower
ound 𝐿𝐵𝜋 =

∑

𝑤𝑖𝑈𝑖 − 𝑈𝐵𝑊𝑁𝑂. Since the upper bounds 𝑈𝐵𝑊𝑁𝑂 for
he WNO problem are weak here (much larger than the optimal values

just compare them with the corresponding values for the LeapHy-
ridSampler version), hence the lower bounds for the WNT problem are
egative. In practice, we assumed 0 (the value of the objective function
s non-negative, see column 6 of Table 5, zeros in brackets). The com-
utation times of both versions of the algorithms differ significantly.
he proportion of QPU_ACCESS_TIME of DWaveSampler to RUN_TIME
f LeapHybridCQMSampler is in our case (15.97 ms.)/(5.12 s) ≈ 0.003.
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When analyzing Table 5, which compares the solvers: hybrid Lea-
pHybridCQMSampler and native DWaveSampler, significant differ-
ences can be noticed. They result indirectly from a different represen-
tation of the considered optimization problem. For the HybridQAdB&B
algorithm using the LeapHybridCQMSampler environment, this is the
CQM model, i.e. Constrained Quadratic Model. It is solved by the
hybrid solver using both classical methods (e.g., including the tabu
search algorithm) and, in part, quantum methods. However, quantum
methods require a QUBO representation which in practice can be used
for relatively small subproblems of the problem under consideration.
This is clearly visible in the relatively short QPU_ACCESS_TIME for
this computation model. In turn, the use of the native DWaveSampler
model implementing only quantum annealing requires the conversion
of CQM to BQM (Binary Quadratic Model) at the model preparation
level, which is associated with a significant increase in the number of
variables (only binary ones) compared to the CQM model. The time of
calculation QPU_ACCESS_TIME practically does not change – it is the
time needed to physically implement the quantum annealing process
– but the results differ in quality from those obtained in the hybrid
model.

6. Conclusions

Performing computations on a quantum computer creates new pos-
sibilities for solving NP-hard discrete optimization problems. Although
quantum annealing does not guarantee obtaining an optimal solution, it
can be successfully used in the construction of an exact algorithm. This
is because it significantly improves its efficiency through (nondetermin-
istic) control of the process of searching the solution space. The paper
presents the concept of a hybrid quantum exact algorithm based on
the Branch and Bound method of solving a single-machine scheduling
problem with the minimization of the weighted number of tardy jobs.
The calculation results of the quantum annealing-based algorithm are
used to determine the calculation trajectory.

The computational experiments performed showed that the relative
difference between the upper and lower bound values calculated by
the B&B algorithm with using a quantum machine is small and its
mean value does not exceed four percent. On this basis, it is possible to
approximate the value of the optimal solution with high accuracy. The
measured execution times of the algorithm on the QPU compared with
its version on the CPU indicate the possibility of quantum acceleration,
i.e., the fact of solving the problem on a quantum machine faster
than in its classic silicon equivalent. Computational experiments were
performed on a D-Wave quantum machine. The presented algorithm
can be adapted to solve other NP-hard permutation problems, such as
the traveling salesman problem (TSP) or quadratic assignment problem
(QAP).

The open perspectives for further work in the near future include
extending the obtained results to other quantum machine programming
environments, e.g., IBM Qiskit, both in the quadratic programming
approach and in the quantum gate model. Another direction of research
is related to the development of methods for embedding large examples
on limited-size quantum processors. This requires the development
of a new methodology for partitioning the solution space and the
synchronization of parallel quantum computations.
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