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Wojciech Bożejko 1,* , Paweł Rajba 2 , Mariusz Uchroński 1 and Mieczysław Wodecki 3
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Abstract: In many areas of the economy, we deal with random processes, e.g., transport, agriculture,
trade, construction, etc. Effective management of such processes often leads to optimization models
with random parameters. Solving these problems is already very difficult in deterministic cases,
because they usually belong to the NP-hard class. In addition the inclusion of the uncertainty
parameters in the model causes additional complications. Hence these problems are much less
frequently studied. We propose a new customized approach to searching the solutions space for
problems with random parameters. We prove new, strong properties of solutions, the so-called block
elimination properties, accelerating the neighborhood search. They make it possible to eliminate
certain subsets of the solution space containing worse solutions without the need to calculate the
value of the criterion function. Blocks can be used in the construction of exact and approximate
algorithms, e.g., metaheuristics such as tabu search, significantly improving their efficiency.

Keywords: scheduling; single machine; random parameters

1. Introduction

Studies of discrete optimization problems that have been conducted for many years
relate mostly to deterministic models, in which the basic assumption is the uniqueness of
the parameters. In order to solve these types of problems that mostly belong to classes of
strongly NP-hard problems, a number of very effective approximate algorithms have been
developed. The solutions designated by these algorithms are only slightly different from the
optimal ones. In practice, however, during the process realization (according to the adopted
schedule), it often turns out that some parameters (e.g., operation times) are different from
those initially adopted values. In the absence of the stability of solutions, it happens that
it loses not only optimality but also acceptability. However, in many applications there
are great difficulties in defining process parameters in a clear way or data coming from
imprecise measuring devices. They bear a certain error, thus they are uncertain.

The choice of approach to modeling and analysis results from such issues as system
features, the ability to perform data measurements, data reliability, the power of theoretical
tools, etc. The knowledge of all the aforementioned elements is necessary for the efficient
solving of practical problems (Shang, You [1], Zhang [2]). For example, the data regarding
the duration of the activity can be accepted as deterministic (e.g., normative), measure their
random characteristics (take a series of measurements and verify the hypothesis about the
type of distribution and its parameters), make a measurement to approximate a deterministic
value (if the variance is small enough) or designating the membership function for the fuzzy
representation, determine the membership function based on expert opinion. The complexity
of the problems and computational problems already for deterministic cases results in the fact
that problems with uncertain data are much less formulated and analyzed.

Many problems related to the decision-making process come down to solving some
scheduling problems on machines. Scheduling problems with uncertain data can be solved

Appl. Sci. 2023, 13, 5304. https://doi.org/10.3390/app13095304 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13095304
https://doi.org/10.3390/app13095304
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1868-8603
https://orcid.org/0000-0003-4252-5545
https://orcid.org/0000-0002-9185-1841
https://orcid.org/0000-0001-8188-4503
https://doi.org/10.3390/app13095304
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13095304?type=check_update&version=1


Appl. Sci. 2023, 13, 5304 2 of 18

using methods based on elements of probability (Shaked and Shandhkumard [3], Zhu and
Cai [4], Van den Akker and Hoogeveen [5,6], Vondrák [7], Dean [8]), Soroush [9], He [10]
or fuzzy set theory (Prade, [11], Ishii [12], Iscibuchi et al. [13], Itoh and Ishii [14], Bocewicz
et al. [15]). The accuracy (quality) of such an algorithm is not determined on the basis
of individual instances of the problem (as in deterministic data), but on a certain family of
examples generated randomly according to a certain probability of distributions. Such specific
accuracy will be called stability of an algorithm. Research carried out in recent years, in which
uncertainty is taken into account, is promising not only at the stage of model construction but
also during the algorithm design (Rajba and Wodecki [16], Bożejko et al. [17]).

In this paper, we consider the strongly NP-hard single-machine task scheduling problem
with critical lines and minimizing the total weighted tardiness tasks cost on a single machine.
Task execution times are random variables. We present methods of an intermediate review
of solutions, the so-called ‘block properties of the problem,’ which we use in the tabu search
algorithm (TS). This algorithm is one of the best for solving the deterministic version of
the problem under consideration (Bożejko et al. [18]). It is deterministic and guarantees the
repeatability of calculations. Computational experiments were conducted mainly to:

1. check the effectiveness of using blocks, i.e., their impact on the time and quality of the
determined solutions; and

2. testing the stability of algorithms, i.e., their resistance to data disturbances.

The computational experiments show that the solutions obtained in the probabilistic
model including blocks are stable and allow us to generate better solutions in less time.

It follows from the conducted computational experiments that the solutions obtained
in the probabilistic model are stable, i.e., not very sensitive to random data disturbances.

2. Single-Machine Total Weighted Tardiness Tasks Scheduling Problem

Tasks scheduling problems on a single machine with cost goal functions have a
very long (over 50 years) history (the first work of Rinnoy Kan et al. [19] appeared in
1975). However, despite the simplicity of formulation, they mostly belong to the class of
strongly NP-hard problems. They are important both from the point of view of theory and
practice. Such problems often constitute a significant part of more extensive production
systems. Different variants of scheduling tasks on a single machine are still intensively
tested and the results obtained are the inspiration for much more complex research of
multi-machine problems. While describing of the problem considered in this section we
will use some definitions, designations and properties presented in the following works:
Bożejko et al. [18,20], Rajba and Wodecki [16].

A single-machine Total Weighted Tardiness Problem, abbreviated as TWT , will be
defined as follows.

TWT Problem: Let
J = {1, 2, . . . , n},

be a set of tasks to be performed, without interruption, on the executing machine performing at
a given moment at most one task at a time. For task i ∈ J (i = 1, . . . , n) we define:

pi—execution time;
wi—penalty for tardiness;
di—demanded completion time..

Let π = (π(1), π(2), . . . , π(n)) be any permutation of elements from J , and Φ a set
of all such permutations. Then,

Cπ(i) =
i

∑
j=1

pπ(j) (1)

is a moment of completion of task π(i) ∈ J , executed as i-th in a sequence. If Cπ(i) ≤ dπ(i),
then the task is called an early one, otherwise a tardy one.

Tardiness of task
Tπ(i) = max{0, Cπ(i) − dπ(i)}, (2)
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and cost of its execution f (π(i)) = wπ(i)Tπ(i). By

F (π) =
n

∑
i=1

wπ(i)Tπ(i) (3)

we designate cost of execution of all tasks (weight of permutation π).
The problem under consideration (which will be also called a deterministic) problem

involves determining permutation π∗ ∈ Φ with the smallest weight, such that

F (π∗) = min{F (π) : π ∈ Φ}. (4)

In the literature, this problem is denoted by 1||∑ wiTi and belongs to the strongly
NP-hard class of problems. Optimal algorithms for solving it based on the dynamic
programming method were presented by Lawler, Moore [21], Sahni [22], those based on
the branch and bound method were presented by Potts, Van Wassenhove [23] Villareal,
Bulfin [24], Urgo [25] and Wodecki [26]. They enable the effective determination of optimal
solutions for examples whose number of tasks does not exceed 80. Due to the time-
consuming characteristic of exact algorithms, in practice, approximate algorithms (mainly
metaheuristics) are usually applied.

In the best metaheuristic algorithms, where the task is solving multi-machine task
scheduling problems, so-called ‘block elimination properties’ are used (e.g., for flow shop
problems such algorithms are presented in the works of Nowicki and Smutnicki [27] and
Grabowski and Wodecki [28]). Blocks enable both the reduction of calculation time, as
well as improvement of the values determined by the algorithm solutions. For the single-
machine Total Weighted Tardiness Problem TWT presented in this section, in the works
of Uchroński [29], Wodecki [26,30] there were two types of blocks presented: the so-called
early and tardy blocks, which were successfully used in tabu search algorithms.

3. Random Task Execution Times

In the literature we can find many ways in which uncertainty is modeled. First,
we can distinguish proactive and reactive approaches where the former assumes that
all preparations for handling uncertainty are completed before the algorithm starts its
execution, while the latter assumes the opposite, i.e., uncertainty needs to be handled during
the actual algorithm execution. Of course, we can also find many types of combination
of those two. Moreover, we can also distinguish an online approach where the problem
instance is not known in advance. Next, uncertainty can be modeled in different ways and
even though there are several descriptions in the field, we can distinguish 3 main categories:
probabilistic (or stochastic), where random variables are involved, and a fuzzy description
and bound form where fixed ranges are involved. Sometimes by stochastic the authors
refer to certain types of online algorithms and solutions in the bound form are sometimes
referred to as robust, by fixed ranges we can introduce the guarantee on the upper or
bottom bound of the provided solutions (however, in general the robustness description
is not limited to the bound form). Having the above, in this paper we investigate the
proactive version of the problem with uncertainty modeled by a probability approach
with random variables; that is, in this section, we consider the probabilistic version of the
aforementioned single-machine Total Weighted Tardiness Problem and we assume that the
times of completing the tasks are independent random variables.

They are most often described in the literature as scheduling problems with uncertain
parameters. In practice, there are great difficulties in establishing the probability distri-
bution of random parameters. Especially when we are dealing with unique processes,
therefore, there is no representative statistical data.

An extensive review of methods and algorithms for solving the problems of combina-
torial optimization with random parameters was presented by Vondrák in monograph [7]
and in the more recent work by Xiaoqiang et al. [31]. Some practical problems are also
considered in the works of Bożejko et al. [20,32–34]. The last of these works concerns the
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implementation of construction projects under uncertainty. We will now introduce the
necessary definitions and designations.

If X is a continuous random variable, we will use the following designations later in
this work:

FX—cumulative distribution function of random variable X;
fX—density function of random variable X;
E(X)—expected value of random variable X.

We are considering, as described in Section 2, a probabilistic version of the TWT
problem, in which the task execution times p̃i are independent random variables, and the
remaining task parameters wi and di (i = 1, 2, . . . , n) are deterministic. This problem will
be denoted in short by PTWT.

If task execution times p̃i are random variables, then for any order of execution of
tasks π ∈ Φ, the completion of the task π(k)

C̃π(k) = p̃π(1) + p̃π(2)+, . . . ,+ p̃π(k),

tardiness T̃π(k) = max{0, C̃π(k) − dπ(k)} (Equivalent (2)) and criterion function (Equivalent (3))

F̃ (π) =
n

∑
i=1

wπ(i)T̃π(i). (5)

are also random variables.
In algorithms for solving optimization problems, it is necessary to compare the values

of the criterion function for various acceptable solutions (e.g., permutations). In a case
when this function is a random variable (5) we will be using its expected value. Therefore,
as comparative criteria of solutions the following function will be used:

L(π) = E(F̃ (π)) =
n

∑
i=1

wπ(i)E(T̃π(i)). (6)

By
f (π(k)) = wπ(k)E(T̃π(k)) (7)

we designate the cost of execution of task π(k).
Later in this work we present the methods for calculating the value of criterion function (6).
Following elements in sequence from π ∈ Φ

β = (π(a), π(a + 1), . . . , π(b)),

where 1 ≤ a ≤ b ≤ n will be called subpermutation of permutation π. The cost of
performing tasks from subpermutation β

L(β) =
b

∑
i=a

wπ(i)E(T̃π(i)). (8)

By Y(β) we denote the set of sub-permutation elements β, i.e.,

Y(β) = {π(a), π(a + 1), . . . , π(b)}. (9)

4. Blocks of Tasks

We are considering permutation π ∈ Φ, i.e., some kind of solution to the PTWT
problem. If the expected value of the completion time of the task π(i)

E(C̃π(i)) ≤ dπ(i),
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then the task π(i) it is called an early one, otherwise, i.e., when

E(C̃π(i)) > dπ(i),

a tardy one.
Later in this section, we present a method of breaking π into subpermutations (called

blocks) containing only early or tardy tasks. Next, we will determine the optimal order
of tasks in each of these subpermutations. A permutation generated in this way has the
following property: any change in the order of elements in any block does not generate a solution
with a smaller value of the criterion function (6). This is the so-called block elimination
property. Blocks for problems with a deterministic demanded completion time (due-dates)
are considered by Uchroński [29] and Bożejko et al. [35], and with a probabilistic one, by
Bożejko et al. [36].

4.1. Blocks of Early Tasks

Definition 1. Subpermutation of tasks πT in permutation π ∈ Φ is called blocks of early tasks
(in short T -block), if:

(a) every task j ∈ πT is early and dj ≥ E(C̃last), where C̃last is a random variable—date of
completion of execution of the last task from πT ,

(b) πT is the maximum subpermutation meeting the constraint (a).

Corollary 1. If πT = (π(a), π(a + 1), . . . , π(b)) is a T -block in a permutation π, then

1. an inequality min{dj : j ∈ πT } ≥ E(C̃last) is fulfilled,
2. the cost of execution of tasks from πT ,

L(πT ) =
b

∑
i=a

wπ(i)E(T̃π(i)) = 0. (10)

Using this property, we determine the first T -block in permutation π. After minor
modifications (expected values of random variables E(C̃i) instead of deterministic values
Ci), one can apply the AT -block algorithm presented in the work of Uchroński [29]. The
computational complexity of this algorithm is O(n). Considering further elements of
permutation, after the last element of the first T -block, we can determine the next block of
early tasks.

Lemma 1. If permutation β was generated from π ∈ Φ by changing the order of elements in some
block of early tasks in permutation π to

L(β) = L(π).

Proof. The proof results directly from the definition of the early task block and equal-
ity (10).

4.2. Blocks of Tardy Tasks

Definition 2. Subpermutation of tasks πD in a permutation π ∈ Φ is called a D-block of tardy
tasks, if:

(a′) every task j ∈ πD is tardy and dj < E(S̃ f irst + p̃j), where S̃ f irst is a random variable—date
of starting the execution of the first task from πD ,

(b′) πD is a maximum subpermutation meeting the constraint (a′).

The following properties result directly from the tardy task block definition.

Corollary 2. If πD = (π(a), π(a + 1), . . . , π(b)) is a D-block in permutation π, then
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1. the following inequality is met

max{dj : j ∈ πD} < E(S̃ f irst) + min{E( p̃i) : i ∈ πD}.

2. any task (belonging to πD), swapped in the first position, in permutation π is tardy.

Similarly as in the T -block, we determine the first D-block in permutation π. After
modifications (expected values of random variables E(C̃i) instead of deterministic values
Ci and E(S̃ f irst) instead of S f irst), one can apply the AD-block algorithm presented in
the work of Uchroński [29]. The computational complexity of this algorithm is O(n).
Considering further elements in permutation, after the last of the first D-blocks, we can
designate the next block of tardy tasks.

Theorem 1 ([26]). For any permutation π ∈ Φ there is such division π into subpermutations in
which each of them is:

(i) T -block, or
(ii) D-block.

The algorithm for division of an n-elemental permutation into blocks, based on the
proof of Theorem 1, has a computational complexity O(n).

It follows from the block definition and the Theorem 1 that after the division of
permutation into blocks:

1. Every task belongs to some T or D block.
2. Different blocks have different elements.
3. Two T or D blocks can appear directly next to each other.
4. A block can contain only one task.
5. The division of permutations into blocks is not interchangeable.

It is easy to show that the order of occurrence of tasks in the D-block is not optimal
due to the criterion (6). Later in this section we present, we are presenting a method
for determining the optimal order of elements in the D-block. First, we will prove some
auxiliary lemma.

Lemma 2. Let us assume that permutation δ was generated from π ∈ Φ by swapping the position
of two random neighboring elements in the permutation. If for every i (i = 2, 3, . . . , n) there is:

fπ(i−1)(E(C̃π(i−1))) + fπ(i)(E(C̃π(i))) ≤ fπ(i−1)(E(C̃π(i)))+

fπ(i)(E(C̃π(i) − p̃π(i−1))), (11)

then

L(δ) ≥ L(π).

Proof. For the determination of attention, we assume that δ was created from permutation
π by swapping the positions of task π(i) z π(i− 1) (2 ≤ i ≤ n), then

δ(j) = π(j), therefore E(C̃δ(j)) = E(C̃π(j)),

for j = 1, 2, . . . , i− 2, i + 1, . . . , n

and
δ(i− 1) = π(i), δ(i) = π(i− 1),

E(C̃δ(i−1)) = E(C̃π(i) − p̃π(i−1)), E(C̃δ(i)) = E(C̃π(i)).
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Difference in the criterion value:

L(δ)−L(π) =
n

∑
j=1

fδ(j)(E(C̃δ(j)))−
n

∑
j=1

fπ(j)(E(C̃π(j))) =

i−2

∑
j=1

fδ(j)(E(C̃δ(j))) + fδ(i−1)(E(C̃δ(i−1)))+

fδ(i)(E(C̃δ(i))) +
n

∑
j=i+1

fδ(j)(E(C̃δ(j)))−

−
[

i−2

∑
j=1

fπ(j)(E(C̃π(j))) + fπ(i−1)(E(C̃π(i−1)))+

fπ(i)(E(C̃π(i))) +
n

∑
j=i+1

fπ(j)(E(C̃π(j)))

]
=

fδ(i−1)(E(C̃δ(i−1))) + fδ(i)(E(C̃δ(i)))−

fπ(i−1)(E(C̃π(i−1)))− fπ(i)(E(C̃π(i))).

Using the permutation definition δ, we obtain:

L(δ)−L(π) = fδ(i−1)(E(C̃δ(i−1))) + fδ(i)(E(C̃δ(i)))−

fπ(i−1)(E(C̃π(i−1)))− fπ(i)(E(C̃π(i)))−

= fπ(i)(E(C̃π(i) − p̃π(i−1))) + fπ(i−1)(E(C̃π(i)))−

fπ(i−1)(E(C̃π(i−1)))− fπ(i)(E(C̃π(i))) ≥ 0.

The last inequality follows from the assumption (11).

Corollary 3. If tasks π(i− 1), π(i) belong to some D-block in permutation π, then inequality
(11) takes the form:

wπ(i−1)

E( p̃π(i−1))
≥

wπ(i)

E( p̃π(i))
. (12)

Lemma 3. Let B = (π(a), π(a + 1), . . . , π(b)), 1 ≤ a < b ≤ n be the D-block in permutation
π. If each pair of elements adjacent to B satisfies the relation (12), then the order in B is optimal for
the tasks of the set Y(B), i.e.,

L(B) = min{L(γ) : γ − permutation

of elements of the set Y(B)}.

Proof. The proof of the Lemma 2 and the property (12) should be used, which by assump-
tion is satisfied by every pair of elements from subpermutation B.

Definition 3. Let B be the partition of permutation π into blocks. The π permutation is ordered (in
short D-OPT), if every D-block of tasks satisfies the relation (12), so they appear in optimal order.

Corollary 4. Changing the order of tasks in any block of ordered permutation π does not generate
permutations of a lower value of criterion function.

We will now prove a theorem containing the necessary conditions, which must be met
in order to generate a solution of the smaller criterion function value.
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Theorem 2. Let π ∈ Φ be the D-OPT permutation. If β ∈ Φ and

L(β) < L(π), (13)

then in the permutation β at least one task of some block from division π was swapped before the
first or last task of this block.

Proof. Let B = [B1, B2, . . . , Bk] be a division of the ordered permutation π ∈ Φ into blocks.
Every block is a sequence of tasks

Bi = (π(ai), π(ai + 1), . . . π(bi)), for i = 1, 2, . . . , k, where

1 ≤ a1 ≤ b1 < a2 ≤ b2 <, . . . ,< ak ≤ bk.

By
Y i(π) = {π(ai), π(ai + 1), . . . , π(bi)},

we denote a set of tasks from block Bi.
Let permutation β ∈ Φ andL(β) < L(π). Let us assume indirectly that in permutation

β no task from any block B1, B2, . . . , Bk was swapped before the first or last task of this
block. Thus

Y i(π) = Y i(β), i = 1, 2, . . . , k.

Therefore the sequence of tasks (π(ai), π(ai + 1), . . . , π(bi)) in permutation π and
(β(ai), β(ai + 1), . . . , β(bi)) in β are permutations of the same subset of tasks {π(ai), π(ai +
1), . . . , π(bi)}. It follows from Lemma 1 and 3 that in this case L(β) ≥ L(π), which is
contrary to the assumption (13) of Theorem 3.

The above theorem is the basis for the construction of a subneighborhood in algorithms
based on the local improvement method.

5. Tasks Execution Times with Normal Distribution

We now consider the probabilistic Total Weighted Tardiness Problem PTWT. In order
to simplify the notation, it was assumed that the order of execution of tasks is a natural
permutation, i.e., π = (1, 2, . . . , n). Let ( p̃i, wi, di) (i ∈ J ) be an example of the problem
data, where p̃i ∼ N(mi, si) are random variables with normal distribution, and wi and di
are certain numbers. Using Graham’s notation, this problem can be symbolically presented
as 1| p̃i ∼ N(mi, si)|∑ wiTi. When determining the value of the criterion function (6) of the
PTWT problem, one must compute the expected tardiness value T̃i, i.e., E(T̃i). First, we
present some facts concerning distributions of random variables.

Fact 1. If task execution times are independent random variables with normal distribution p̃i ∼
N(mi, si) i ∈ J , the dates of completing tasks are also random variables with normal distribution
C̃i ∼ N(µi, σi), where

µi =
i

∑
j=1

mj and σi =

√
∑i

j=1 s2
j . (14)

In this case, tardiness is a random variable defined as follows:

T̃i =

{
C̃i − di, if C̃i > di,
0, if C̃i ≤ di.

Lemma 4. Cumulative distribution FT̃i
of distribution of random variable T̃i is expressed by the formula:

FT̃i
(x) =

{
0, x ≤ 0,
FC̃i

(di + x)− FC̃i
(di + x)FC̃i

(di) + FC̃i
(di), x > 0,
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Proof. Using the definition of the random variable T̃i we consider two cases.

1. x > 0. Then
FT̃i

(x) = P(T̃i < x) =

P(T̃i < x|C̃i − di > 0)P(C̃i − di > 0)+

P(T̃i < x|C̃i − di ≤ 0)P(C̃i − di ≤ 0).

We can see two facts:
P(T̃i < x|C̃i − di ≤ 0) = 1

and
P(T̃i < x|C̃i − di > 0) = P(C̃i − di < x).

Next we have:

FT̃i
(x) = P(C̃i − di < x)P(C̃i − di > 0) + P(C̃i − di ≤ 0) =

P(C̃i < di + x)P(C̃i > di) + P(C̃i ≤ di) =

FC̃i
(di + x)(1− FC̃i

(di)) + FC̃i
(di) =

FC̃i
(di + x)− FC̃i

(di + x)FC̃i
(di) + FC̃i

(di).

2. x < 0. It is obvious that FT̃i
(x) = 0.

In order to calculate the density function fT̃i
(x) of random variable T̃, it is enough to

calculate the derivative of the cumulative distribution function FT̃i
(x). Thus

fT̃i
(x) =

{
0, for x ≤ 0,
fC̃i

(di + x)− FC̃i
(di) fC̃i

(di + x), for x > 0.

Using the above lemma we will prove the theorem enabling the calculation of the
expected value of the random variable T̃i.

Theorem 3. Expected value of the random variable T̃i

E(T̃i) = (1− FC̃i
(di))

 σ√
2π

e
−(di−µi)

2

2σ2
i +

(µi − di)

(
1− FN(0,1)(

di − µi
σi

)

))
.

Proof. By definition of the expected value of a random variable

E(T̃i) =
∫ ∞

−∞
x fT̃i

(x)dx =

∫ ∞

0
x
(

fC̃i
(di + x)− FC̃i

(di) = fC̃i
(di + x)

)
dx∫ ∞

0
x fC̃i

(di + x)dx−
∫ ∞

0
xFC̃i

(di) fC̃i
(di + x)dx =

(1− FC̃i
(di))

∫ ∞

0
x fC̃i

(di + x)dx. (15)

By introducing the appropriate substitutions, we obtain:

E(T̃i) = (1− FC̃i
(di))

∫ ∞

di

(y− di) fC̃i
(y)dy =
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(1− FC̃i
(di))

(∫ ∞

di

y fC̃i
(y)dy− di

∫ ∞

di

fC̃i
(y)dy

)
.

The following equations are easy to prove:

∫ ∞

di

y fC̃i
(y)dy =

σi√
2π

e
−(di−µi)

2

2σ2
i ) + µ

(
1− FN(0,1)(

di − µi
σi

)

)
and

di

∫ ∞

di

fC̃i
(y)dy = di

(
1− FN(0,1)(

di − µi
σi

)

)
.

By inserting the above equations into the Expression (15) we obtain the theorem thesis:

E(T̃i) = (1− FC̃i
(di))

 σi√
2π

e
−(di−µi)

2

2σ2
i +

(µi − di)

(
1− FN(0,1)(

di − µi
σi

)

))
,

which ends the proof of the theorem.

The above proved theorem enables quick calculation of the expected value of tardiness
for random dates of the tasks’ completion. Thanks to this, the cost of permutation π ∈ Φ
(the value of criterion function (6)) is:

L(π) = E(F̃ (π)) =
n

∑
i=1

wπ(i)E(T̃π(i)) =

n

∑
i=1

wπ(i)(1− FN(0,1)(
di − µi

σi
))

 σi√
2π

e
−(di−µi)

2

2σ2
i +

+(µi − di)

(
1− FN(0,1)(

di − µi
σi

)

))
. (16)

6. Tabu Search Algorithm

For solving NP-hard discrete optimization problems, approximate algorithms are
almost exclusively used. The solutions determined by these algorithms are, from an
application point of view, fully satisfactory (they often differ from the best solutions by
less than 1%). They belong mostly to the local search methods, whose operation boils
down to iterative browsing of a certain subset of acceptable solutions (neighborhood) and
determining the best neighbor. One of the best implementations of this approach is tabu
search algorithm. The work [18] presents such an algorithm solving the TWT problem.
The tabu search algorithm is deterministic, so it guarantees repeatability of results. The
application of block properties in the construction of an algorithm significantly improved
its efficiency. For solving examples of a single-machine problem with random times of
tasks execution PTWT we used a simplified version of this algorithm. Below, we briefly
describe its basic elements.

6.1. Moves and Neighborhoods

In each iteration of an algorithm based on a local search method using the neighbor-
hood (moves) generator, a subset of a set of solutions, neighborhood is determined. If the
solutions are permutations, most often the swap-type (s-move) and insert (i-move) are used.
The first move swaps positions of several elements in permutation, and the second moves
the element to a different position.
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Let
B = [B1, B2, . . . Bν],

be a division of the ordered (D-OPT) permutation π into blocks. The m move made on
permutation π is called improving if it generates permutation m(π) with a lower value of
criterion function. It follows from Theorem 2 that moves consisting of swapping the order
of elements in any block ofD-OPT permutation are not improving moves. We now consider
task π(j) belonging to a certain block from the division B of permutation π. Moves that
can bring improvement consist of swapping the task π(j) (before) the first or (after) the last
task of this block. LetMj

b f (π) andMj
a f (π) be sets of these moves. By

M(π) =
n⋃

j=1

Mj
b f (π)∪

n⋃
j=1

Mj
a f (π), (17)

we designate the set of all moves that can bring improvement, i.e., moves before or after
blocks of some π permutation. Since the procedure for splitting permutations into blocks is
not unambiguous, hence the set of movesM(π) is not explicitly defined and depends on
the considered split. Formally, in the definition (17) there should be a symbol identifying a
specific division. To simplify the description, it is omitted.

For a fixed split D-OPT of permutation π ∈ Φ into blocks, the set of solutions

N (π) = {m(π) : m ∈ M(π)} (18)

is subneighborhood, generated with the use of “block elimination properties”.
The procedure for determining subneighborhood (including the elimination of certain

moves generating permutations that do not improve the value of the objective function) has
the complexity of O(n2). Its use has significantly improved the efficiency of the algorithm
solving the PTWT problem.

6.2. Tabu List

In order to prevent a cycle (returning to the same permutation after a certain number
of algorithm iterations), some attributes of each move are stored on the list of prohibited
moves LTS. It operates on the principle of a FIFO queue. Performing the move, swapping
the element π(r) to the position j, generating from π ∈ Φ permutation β we save the
attributes of this move on the tabu list threefold (π(r), j,L(β)).

Let us assume we are considering the m ∈ M(β), swapping task β(k) to position l,
generating from β ∈ Φ permutation γ. If on the list there is threefold (r, j, Ψ) such that
β(k) = r, l = j and W(γ) ≤ Ψ, such a move is prohibited and removed from the setM(β).
The only parameter of the list is its length, i.e., the number of remembered elements. In the
literature, there are many descriptions of implementations of the tabu list (Algorithm 1).
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Algorithm 1 Tabu Search (TS)

Input:
π—start permutation;
LTS = ∅—tabu list;

Output:
π∗—best solution;

repeat
Determine the subneighborhood N (π) of permutation π due to Equation (18);
Delete from N (π) permutations forbidden by the list LTS;
Determine permutation β ∈ N (π), such that
L(β) = min{L(δ) : δ ∈ N (π)};

if (L(β) < L(π∗) then
π∗ := β;

Place attributes β on the list LTS;
π := β

until (the completion condition is fulfilled).

Termination condition:
1. calculation time,
2. maximum number of iterations.

7. Computational Experiments

This section introduces a method of random generation of data, a measure of algorithm
stability and the calculation results of two algorithms:

TSP—probabilistic tabu search algorithm with entire neighborhood generated by the insert;
TSP+B—modified algorithm TSP , with the additional application of block elimination
properties in the procedure of neighborhood generation.

The algorithms have been implemented in C++ and run on the “Bem” cluster in the
Wrocław Network Supercomputer Center working under 64-bit operating system Scientific
Linux 6.10 (Final) equipped with Intel Xenon processor a E5-2670 (2.3 GHz). Calculations
were made on suitably modified examples of reference data for the problem 1||∑ wiTi
included with the best currently known solutions on the OR-Library website [37]. The data
was randomly generated for the number of tasks n = 40, 50 i 100. For each n there were 125
examples with varying degrees of difficulty designated. When running each of the three
algorithms, the following assumptions were made:

• starting permutation: π = (1, 2, . . . , n),
• length of the tabu list: n.

A set of these 375 examples, called deterministic data, will be denoted by D.

7.1. Generating of Test Data

Computational experiments were conducted on examples that were generated accord-
ing to the standard method of generating popular benchmarks, proposed by Potts and Van
Wassenhove [23], available on the website [37].

For a fixed number of tasks, n example of deterministic data

η = ((p1, w1, d1), (p2, w2, d2) . . . , (pn, wn, dn))

is a sequence of n triples (task execution time, tardiness cost factor, requested completion
date). Based on this, we set examples of probabilistic data

η̃ = (( p̃1, w1, d1), ( p̃2, w2, d2) . . . , ( p̃n, wn, dn))),

where task execution times p̃i (i = 1, 2, . . . , n) are independent random variables of normal
distribution p̃i ∼ N(pi, c · pi) (i = 1, 2, . . . , n), and a coefficient c = 0.05, 0.1, 0.2, where c is
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the random data equivalent of the RDD parameter in the method used to generate data
for the single-machine problem with the total weighted tardiness criterion available on the
OR-Library [37] website. For one deterministic example, we generate three examples of
probabilistic data from set D. In total, probabilistic data set P̃ has 1125 examples.

For probabilistic data, task execution times are random variables. The probabilistic
algorithm (i.e., the algorithm PTWT problem), for a fixed example of probabilistic data,
sets a solution task execution order (task permutation). Therefore we set the order of the
tasks, but we do not know the specific values of the execution times because they are the
implementation of random variables of normal distribution. Thus, they can have different
values. We introduce a certain measure (stability is covered in the next chapter) solution
resistance (more generally the algorithm with which the solution was determined). For this
purpose, the so-called sets of disturbed data were generated.

Let
η̃ = (( p̃1, w1, d1), ( p̃2, w2, d2) . . . , ( p̃n, wn, dn)),

(η̃ ∈ P̃) be an example of probabilistic data. For this example, there were 100 examples of
disturbed data generated by randomly determining task execution times. The set of these
examples is denoted by Z(η̃). An example of disturbed data θ ∈ Z(η̃) takes the form of

θ = ((p′1, w1, d1), . . . , (p′n, wn, dn)),

where the task execution time p′i (i = 1, . . . , n) is implementation of random variable p̃i
of normal distribution, i.e., p̃i ∼ N(pi, c · pi) (i = 1, 2, . . . , n) c = 0.05, 0.1, 0.2, where c is
the random data equivalent of the RDD parameter in the standard method of generating
popular single-machine benchmarks from the [37] website. A set of disturbed data will be
denoted by Z , |Z| = 112500.

7.2. Algorithm Stability

Let F be the solution value determined by the tested algorithm and F∗ the value of the
reference solution. Relative error of the solution F

δ =
F− F∗

F∗
100% (19)

indicates by how many percent the solution determined by the algorithm is worse or better
than the reference one. Taking into consideration a set of examples, we can then assess the
quality of solution designated by the algorithm solutions, and thus indirectly—the quality
of the algorithm.

Let η̃ be an example of probabilistic data, Z(η̃) data set generated from η̃ by distur-
bance of task execution times according to the assumed schedule. We have further:

Are f —algorithm designating reference solutions,
A—algorithm whose resistance we are testing (in our case AP or AP+B),
π(A,x)—solution designated by algorithm A for data x, F(π(A,x), y)—value of criterion
function of solution π(A,x) for the example y.

Then

∆(A, η̃,Z(η̃)) =
∑ϕ∈Z(η̃) F(πA,η̃ , ϕ)−∑ϕ∈Z(η̃) F(π(Are f ,ϕ), ϕ)

∑ϕ∈Z(η̃) F(π(Are f ,ϕ), ϕ)
,

we call resistance of solution π(A,η̃) (designated by algorithm A for the example η̃) on the set
of disturbed data Z(η̃).

If P̃ is a set of examples of probabilistic data of the examined problem, then the expression

S(A, P̃) = 1
|P̃ | ∑

η̃∈P̃
∆(A, η̃,Z(η̃)) (20)
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we call a resistance coefficient of algorithm A on set P̃ . The smaller its value, the more stable
the solutions determined by the algorithm, i.e., random disturbances of data results in less
change in the cost of the solution.

7.2.1. Algorithms’ Efficiency

Computations of probabilistic algorithm TSP and its version with blocks TSP+B were
made on the examples from set D (see Section 7). The received results were compared with
the best currently known. For each example, the relative error δ, as well as calculation time,
were calculated. Average relative deviation values δaprd, for individual groups of examples,
are shown in Table 1. The computations time for a run was fixed at 60 s in each instance.

Table 1. Computational results for deterministic data [37] (t = 60 s).

Instance Group
wt40 wt50 wt100

TSP TSP+B TSP TSP+B TSP TSP+B

000–025 6.66 0.12 1.43 0.04 1.77 0.22
026–050 5.27 0.75 17.07 0.09 230.38 23.62
050–075 1.93 0.80 2.28 1.29 2.16 1.23
076–100 42.77 5.92 9.25 3.70 64.54 7.81
101–125 0.45 1.23 1.27 2.85 0.36 0.39

Average 11.42 1.76 6.26 1.60 59.84 6.65

As expected for all groups of examples, the average relative error is smaller for the
algorithm with blocks. The difference is particularly noticeable for large-scale examples.
For n = 100 tasks, the relative error of the algorithm without blocks is 59.84%, and with
blocks only 6.65%, for the same calculation time of one minute for a single test instance.

7.2.2. Algorithms’ Stability

The main purpose of the conducted computational experiments was to examine the
individual stability of individual algorithms, i.e., resistance of solutions determined by
these algorithms for random changes (disturbances) of parameters.

Let D be a set of deterministic data, D̃ the corresponding set of probabilistic data,
and Z the set of disturbed data. Based on this data, the stability coefficients of individual
algorithms were designated. Comparative results are shown in Tables 2–4 (best values in a
group are marked in bold).

Table 2. Computational results S(A, P̃) for the wt40 instance group.

Instance Group
c = 0.05 c = 0.1 c = 0.2

TSP TSP+B TSP TSP+B TSP TSP+B

000–025 0.0175 −0.0170 0.0183 0.0044 0.0912 0.0850
026–050 0.0087 0.0221 3.7938 3.1483 0.2869 0.2023
050–075 0.0009 −0.0036 0.0247 0.0177 2.4646 2.2704
076–100 0.0009 −0.0288 20.6039 18.0087 0.2451 0.1578
101–125 0.0013 0.0033 0.4440 0.7487 13.2248 12.6221

Average 0.0059 −0.0048 4.9769 4.3856 3.2625 3.0675

In general, the Tabu search algorithm with blocks is much more resistant to disturbed
data disorders. The comparative results generated for 3 groups of examples with the size
n = 40 (Table 3), n = 50 (Table 4), and n = 100 (Table 5) clearly indicate that for almost every
group of examples the value of the resistant coefficient is lower for the TSP+B algorithm
compared to the value of this coefficient for the TSP algorithm. The only exceptions are the
groups of examples 026–050, c = 0.05 and c = 0.1; 010–125, c = 0.05 and c = 0.1 for n = 40;
026–050, c = 0.05, c = 0.1 and 101–125, c = 0.05 for n = 50; 101–125, c = 0.1 and 076–100,
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c = 0.2 for n = 100, but they do not affect significantly the overall value of the immunity
coefficient. The negative value of the coefficient is related to receiving better than reference
solutions by the tested algorithm.

Table 3. Computational results S(A, P̃) for the wt50 instance group.

Instance Group
c = 0.5 c = 0.1 c = 0.2

TSP TSP+B TSP TSP+B TSP TSP+B

000–025 0.0049 −0.0070 0.0263 0.0169 0.0826 0.0862
026–050 0.0148 0.2466 0.1426 0.1878 0.3270 0.1983
050–075 0.0146 −0.0064 0.0595 0.0078 0.2674 0.1840
076–100 0.0054 −0.0256 0.0077 −0.0037 0.1847 0.1720
101–125 0.0138 0.0217 0.0277 0.0265 0.6870 0.6292

Averge 0.0107 0.0459 0.0528 0.0471 0.3097 0.2540

Table 4. Computational results S(A, P̃) for the wt100 instance group.

Instance Group
c = 0.5 c = 0.1 c = 0.2

TSP TSP+B TSP TSP+B TSP TSP+B

000–025 0.0028 −0.0040 0.0199 0.0157 0.0855 0.0761
026–050 15.0490 5.3410 0.0482 0.0478 0.3703 0.3258
050–075 0.0131 −0.0017 0.0282 0.0122 19.6031 17.7367
076–100 0.0642 −0.0294 0.8347 0.7095 0.3933 0.4549
101–125 0.0596 0.0345 0.3063 0.3850 1.1980 1.0438

Average 3.0377 1.0681 0.2475 0.2341 4.3300 3.9275

A summary of the results obtained is given in Table 5 (the best values are marked in
bold). The stability coefficients of both algorithms increase with the increase of parameter c.
This parameter has a direct impact on the variance of the distribution from which the data
are drawn. The TSP+B algorithm has a lower stability factor, so the solutions determined
by this algorithm are more resistant to data disturbances. In addition, this algorithm, at
the same time of calculations, determines much better solutions than the TSP algorithm
(see Table 1). For the number of tasks n = 100, the relative error is almost 10 times smaller.
Summing up, the use of blocks in the tabu search algorithm, compared eith the algorithm
without blocks, gives a significant improvement in the value of the determined solutions
and their stability.

Table 5. Comparative computational results of S(A, P̃)—summary.

c = 0.05 c = 0.1 c = 0.2

TSP TSP+B TSP TSP+B TSP TSP+B

wt40 0.0059 −0.0048 4.9769 4.3856 3.2625 3.0675
wt50 0.0107 0.0459 0.0528 0.0471 0.3097 0.2540
wt100 3.0377 1.0681 0.2475 0.2341 4.3300 3.9275

Average 1.0181 0.3697 1.7591 1.5556 2.6341 2.4163

8. Summary

The paper presents a certain method representing uncertain data in discrete opti-
mization problems, using independent random variables of normal distribution. This
distribution is in practice widely used for solving many non-deterministic decision prob-
lems. Consideration of uncertain data leads to great difficulty in terms of the calculations of
practical optimization problems which, however, significantly better describe reality than
deterministic models.
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Also presented is the construction of the algorithm based on the tabu search method
for the problem of scheduling tasks on a single machine with minimization of the sum of
penalties for tasks not completed on time. Random execution times tasks are represented
by independent random variables of normal distribution. Since the objective function is a
random variable, thus, when choosing an element from the neighborhood as a comparative
criterion the expected value was assumed. To accelerate the calculation, blocks are used,
i.e., certain specific methods of an intermediate review of solutions for the problem under
consideration. Computational experiments were conducted out in order to test the stability
of the algorithms, i.e., the impact of altering task parameters on changes in the value of
a criterion function. The obtained results clearly indicate that probabilistic algorithms
are much more stable, i.e., algorithms in which the randomness of parameters is taken
into account. The use of blocks significantly accelerated the calculations and greatly
improved the stability of the algorithm. The described methods and algorithms can be
directly applied to other probability distributions and also other task parameters (not only
execution times). They can also be adopted in methods that solve problems with uncertain
parameters represented by fuzzy numbers, especially in case of the so-called “triangular
fuzzy numbers”.

Further research directions will be focused on adapting the developed properties to
solve cyclical problems, minimizing the cycle time, as the most frequent case of large-scale
manufacturing in practice.
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Abbreviations
The following notations are used in this manuscript:

n number of tasks
J set of tasks
pi task’s execution time
wi task’s tardiness cost ratio
di demanded task’s execution date
π tasks permutation
Φ a set of all elements’ permutations from J
N (π) solution neighborhood π

Si start date of task i ∈ J
Ci end date of task i ∈ J
p̃i random variable of execution time of task i
T̃i random variable of tardiness of task i
πT semi-block of early tasks
πD semi-block of tardy tasks
L(π) sum of tardiness costs (criterion)

References
1. Shang, C.; You, C. Ditributionally robust optimization for planning and scheduling under uncertainty. Comput. Chem. Eng. 2018,

110, 53–68. [CrossRef]
2. Zhang, L.; Lin, Y.; Xiao, Y.; Zhang, X. Stochastic single-machine scheduling with random resource arrival times. Int. J. Mach. Learn.

Cybern. 2018, 9, 1101–1107. [CrossRef]
3. Shaked, M.; Shandhkumard, R. (Eds.) Stochastic Order; Academic Press: San Diego, CA, USA, 1994.

http://wcss.pl
http://doi.org/10.1016/j.compchemeng.2017.12.002
http://dx.doi.org/10.1007/s13042-016-0631-y


Appl. Sci. 2023, 13, 5304 17 of 18

4. Zhu, X.; Cai, X. General Stochastic Single-Machine Scheduling with Regular Cost Functions. Math. Comput. Model. 1997, 26,
95–108. [CrossRef]

5. Van den Akker, M.; Hoogeveen, R. Minimizing the Number of Late Jobs in Case of Stochastic Processing Times with Minimum Success
Probabilities; Technical Report; Institute of Information and Computation Science, Utrecht University: Utrecht, The Netherlands,
2004.

6. Van den Akker, M.; Hoogevee, R. Minimizing the number of late jobs in a stochastic setting using chance constraint. J. Sched.
2008, 11, 59–69. [CrossRef]

7. Vondrák, J. Probabilistic Methods in Combinatorial and Stochastic Optimization. Ph.D. Thesis, MIT, Cambridge, MA, USA, 2005.
8. Dean, B.C. Approximation Algorithms for Stochastic Scheduling Problems. Ph.D. Thesis, MIT, Cambridge, MA, USA, 2005.
9. Soroush, H.M. Scheduling stochastic job on a single machine minimize weighted number of tardy jobs. Kiwait J. Sci. 2013, 40,

123–147.
10. He, X.X.; Yao, C.; Tang, Q.H. Robust Single Machine Scheduling with Stochastic Processing Times Based on Event Point. Appl.

Mech. Mater. 2014, 668–669, 1641–1645. [CrossRef]
11. Prade, H. Using fuzzy set theory in a scheduling problem. Fuzzy Sets Syst. 1979, 2, 153–165. [CrossRef]
12. Ishii, H. Fuzzy combinatorial optimization. Jpn. J. Fuzzy Theory Syst. 1992, 4, 31–40. [CrossRef]
13. Iscibuchi, H.; Yamamoto, N.; Misaki, S.; Tanaka, H. Local Search Algorithm for Flow Shop Scheduling with Fuzzy Due-Dates. Int.

J. Prod. Econ. 1994, 33, 53–66. [CrossRef]
14. Itoh, T.; Ishii, H. Fuzzy due-date scheduling problem with fuzzy processing times. Int. Trans. Oper. Res. 1999, 6, 639–647.

[CrossRef]
15. Bocewicz, G.; Nielsen, I.E.; Banaszak, Z.A. Production flows scheduling subject to fuzzy processing time constraints. Int. J.

Comput. Integr. Manuf. 2016, 29, 1105–1127. [CrossRef]
16. Rajba, P.; Wodecki, M. Stability of scheduling with random processing times on one machine. Appl. Mathematicea 2012, 39, 169–183.

[CrossRef]
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