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Abstract. In this paper, a Lagrangian relaxation approach to the prob-
lem of minimization of the total weighted tardiness is presented. The
approach can be used both to solve the original problem as well as to
obtain a high-quality lower bound for the branch-and-bound method.
The problem was further decomposed into upper and lower problems.
For the upper problem, an approach using a local-search metaheuristic
is proposed instead of a subgradient method from the literature. Several
variants of both methods are then implemented and compared through a
numerical example using OR library problem instances. The results prove
the viability of the metaheuristic approach as with little calibration it is
able to match or outperform a refined subgradient method.
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1 Introduction

The problem of minimizing the weighted tardiness of jobs denoted 1||> w;T;
in Graham notation, is one of the most commonly considered single-machine
scheduling problems in both theory and practice. [1,16]. Due to its NP-hardness,
Branch-and-Bound (B&B) method remains one of the most popular approaches
to this problem [17]. B&B is based on computing Upper (UB) and Lower Bounds
(LB). Computing UB is relatively easy since any feasible solution to 1|| > w;T;
can serve as such. Computing the value of LB is harder in practice, especially
for problems such as 1|| Y w;T;. In this paper, we propose an approach based on
Lagrangian relaxation with the use of a hybrid algorithm and metaheuristics.
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2 Primal Problem

The primal problem 1| Y w;T; is as follows. We have a set N' = {1,2,...,n} of
jobs, with processing time p; > 0, deadline d; > 0 and weight w; > 0 for each job
1, to process on the single machine. The aim is to determine job starting times
S =(S51,59,...,5,), as to minimize the total weighted tardiness:

i ilSi +pi — di] T = mi il 1
mslnzlw[ +p ] mslnzlw (1)
where T def [S; +pi — di]t, [z]T def max{z,0} is the tardiness of job i.

Despite T; being a function of S;, we will henceforth refer to 7; instead of
[S; + p; — d;]T. Furthermore, a machine can only process at most one job at any
given moment, thus our solution S has to meet the following constraint:

Vig#i o (Si+pi <85)V(Sj+p; <5i). (2)

Due to the regularity of the objective function for such a problem, a schedule
S is always left-shifted on the time axis, thus S can be unambiguously rep-
resented by processing order (permutation) of jobs m = (7w (1),7(2),...,m(n)),
where 7(7) is the job that will be processed as i-th. As such, for a given processing
order 7 the schedule S is computed recursively in time O(n) as follows:

Sy =0, (3)
STF(Z) = Sﬂ'(i—l) +p7r(i—1)7 1=2,3,...,n. (4)

3 Lagrangian Relaxation and Upper Bound

Lagrangian relaxation is based on relaxing some of the constraints of the primal
problem and including them into objective function as a penalty [7]. Due to its
generality, this approach had been applied to a wide range of optimization prob-
lems. In job scheduling examples include flowshop [6,13], jobshop [4], stochastic
scheduling [14], crane assignment [8] and industrial process such as casting [5].
Aside from scheduling, Lagrangian relaxation had been used in vehicle rout-
ing [12], resource allocation [10], min-flow problems [3]| and classification [9].

In our case, we relax the constraint (2), allowing the machine to process
an arbitrary number of jobs at the same time. From now on we also assume
processing times p; are integers. As a result, job starting and completion times
are integers from the set {0,1,..., H}, where H is the upper bound on the
scheduling horizon. In practice, H = Y., p;. With this, for a given schedule S,
we can define the set of jobs processed in time interval [t — 1,¢]:

LS) L ieN: t>8 >t—p}, (5)

and the number of jobs processed in that interval:

9:(8) = |T,(9)]. (6)
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The problem from Sect. 2 can be stated as a non-linear optimization case:

mSl'n.leiTi’ (7)
g9:(S) =1, t=1,2,..., H, (8)
0<S; <H-—p,, 1=1,2,...,n. (9)

Constraint (8) ensures that exactly one job is processed in time interval [t — 1, ].
Constraint (9) is stated directly by introducing the following set:

SIS =(8,5,...,8,):0<S;i<H-—p;, i=12,...,n}.  (10)

An example of how function g¢;(S) works is shown in Fig. 1. In the upper
part, there is an exemplary schedule S for 5 jobs with Zpi = H = 21. Since
we relaxed the problem, the jobs can overlap. The lower part shows the plot of
9+(S) with its value for a given ¢ corresponding to the number of jobs processed
at t in the upper part. In the original problem, only one job can be processed at
the same time, so ¢;(S) would be equal to 1 for ¢t = [0, H] (dashed line). In the
relaxed problem jobs can overlap, giving us values of ¢;(5) different than 1.

To take (8) into account, we introduce dual variables u def (uy,ug, ..., upg),
where u; is assigned for a fixed t. We can perceive u; as the cost of using the
machine in the interval [t — 1,¢]. We obtain the following Lagrange function:

n H
L(S,u) < Zwm + > ur(ge(S) - 1). (11)

Let us notice that in primal problem 1|| > w;T;, for each left-shifted feasible
schedule S and all t = 1,2,..., H it must hold that ¢;(S) = 1. In such a case
Eq. (11) is equal to the objective function ;" w;T; for schedule S.

|zl
| Wmzzzzzzzzzzz, :
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Fig. 1. Exemplary relaxed schedule and g:(.S) function corresponding to it.
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We now transform function (11) into a more convenient form:

Si+pi
L(S,u) = Z (w;T; + Z ug) Zut ZL (Si,u) — Up, (12)
t=S;+1
Si+pi
Lz(Su U) d:ef ’LUZTZ + Z Uy = ’LUZTZ + USH-Pi — US«; (13)
t=S;+1

Uy=> u,, t=12...H (14

Let S* be an optimal solution to the primal problem (7)—(9) and W (u) be
an optimal solution to ming L(S,u) for a fixed u. Then for all u it holds that:

sz S*+pz_ szs +pz_d +Zut gt _1) (15)
=1

> min L(S, u) Lww). (16)

Thus, W(u) is a lower bound (LB) for the objective function (7) due to the

duality principle. We are to maximize this LB, thus:

max W (u) = maxmbin L(S,u). (17)

The above model can be used to solve the primal problem (7)—(9): if for some u we
find S* from the minimization of ming L(S,u) = L(S*,u) such that ¢;(S*) = 1,
t=1,2,...,H, then S* is an optimal solution to problem (7)—(9).

Problem (17) can be decomposed into two problems: max,, W (u), henceforth
called the upper problem, and ming L(S, u), henceforth called the lower problem.
The lower problem is usually solved multiple times for different values of u. To
solve the upper problem we can use an inexact method (e.g. a heuristic), but
the lower problem has to be solved to optimality to ensure the resulting values
is LB as per (16). We will discuss the approaches to both problems.

4 The Lower Problem

By applying (10)—(13) for a fixed u we obtain:

n

W(u) =minL(S,u) = min Li(S;u) — Uy =Y Vi(u)—Up (18)

Ses ] 0sSisH—p:
def . :
Vi(u) = pogmin L;(Si,u) = 6 _omin, L;(Si,u). (19)

For a fixed u each problem (19) can be solved by directly evaluating all
possible starting times S;. Since formula (14) can be stated in a recursive form
U =Ui_14u, t =1,2,..., H, Uy = 0, computing value U; can be done in time
O(H). Thus, determining (13) with the use of (19) requires time O(H), while
determining W (u) through formula (18) for a fixed u requires time O(nH).
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5 The Upper Problem

Problem (17) is a continuous optimization problem with a non-linear (piecewise
linear in fact) weakly convex function that is not differentiable at “interval junc-
tion” points and with a high size of vector u. Formally, it can be reformulated
as linear programming, but the resulting size makes such reformulation infeasi-
ble. For example, for H = 1000 and n = 100 the expected formulation has 103
variables and 103°° constraints. Due to non-differentiability several alternative
approaches are proposed: (1) subgradient method, (2) local-search metaheuristic,
(3) a hybrid method. We will discuss those approaches below.

5.1 Subgradient Method

Subgradient (SUB) method is often applied to Lagrangian relaxation prob-
lems [11]|. Briefly speaking, SUB can be perceived as an iterative method that

produces a sequence of vectors u’, u',u?, ... as per the following formula:

u,’fﬂ :uf+ak(gt(5k)—1), t=1,2,...,H, (20)

where o is the length of step in k-th iteration while S* is an optimal solution to
the lower problem in k-th iteration, i.e. ming L(S,u*) = L(S*,u"). The choice of
sequence o heavily affects the stability, convergence, and convergence speed of
the method. In theory, the convergence of LB to the value of UB is guaranteed for
any sequence such that limy_,., o =0, Sy a¥ = 0o (e.g. harmonic sequence

. def . .
af = ¢/k for a constant c). The choice of ¢ = a! remains an open question,

as this value depends heavily on specific problem instances and their size. The
method thus requires tedious parameter tuning. Lack of growth of W (u*) for
k=1,2,..., might be caused by “zig-zagging” phenomenon accompanied by a*
quickly approaching zero. Similar results were obtained for a slower converging
sequence of = ¢/k7, v < 1. Another convergence-guaranteed sequence is:

ok =~k W (u*) - W*
lg(S*) =1

where W* is an optimal value for the objective function. The denominator con-
tains the norm of constraint violation for S*, for example

(21)

H

lg(5*) =11 = (g:(5*) — 1), (22)

t=1

For o* given by formula (21) convergence was proven. In practice, due to W*
being unknown, provisory value UB" is used, even though it does not guarantee
convergence. It is advised to update UB¥ in each iteration k by using an auz-
iliary heuristic. One of the simplest approaches is computing the value of the
objective function based on (3)—(4) for permutation 7 obtained by ordering all
jobs according to the non-decreasing value of S¥. It is possible to use more com-
plex methods (i.e. metaheuristics) instead, resulting in a better approximation
of UB* but a slower total algorithm running time. The topic of convergence for
variants of the dual method remains an active field of research [2].
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5.2 Local-Search Metaheuristic

Our aim is to solve problem max, W (u) using metaheuristics and to assess the
feasibility of this approach. To our knowledge such approach does not exist in
the literature. We will propose a variant of SA called next as modified Simulated
Annealing (m-SA) method, though many other metaheuristics can be used.
The method m-SA produces a vector sequence u’, u', ... similar to a regular
SA, but with a different method of generating the next random solution. Vector
u® is our current solution with W (u*) = ming L(S,u*) = L(S*,u*) being its
objective function. By N(u*) we denote the neighborhood of u* defined as:

Nuh) = {u=(uy,...ug): u € [uf — A, uf +(n—-1)A], t=1,...,H} (23)

where A is some number called elementary penalty growth and interval for values
uy is continuous. The next solution u**! € N(u*) is selected in the neighbor-
hood of the current solution u* as follows. First, we randomly generate a single
perturbed solution @ as follows:

at:uf—i_Zt'(gt(Sk)_l)?t:1727"'7H, (24)

where Z;,t =1, ..., H are random numbers with uniform distribution in interval
[0, A]. This perturbed solution choice is unlike typical SA, as the neighborhood
is not uniform but also dynamic due to using term g;(S*). Next, we compute
A =W(a) — W(uF). If A <0 then solution @ is accepted unconditionally, i.e.
uFt1 .= 4. Otherwise, solution @ is accepted with probability e(~4/T) where
T is a parameter called temperature. In practice, the solution is accepted when
e(=4/T) < R, where R is random number from interval [0, 1]. If solution % was
not accepted by either the first or second condition, then we set u**! := u*.

Temperature is reduced systematically according to the so-called cooling
scheme, usually in every iteration. Several such schemes have been defined in
the literature. In our case we began from the geometric scheme T#+1 = \T*,

=0,1,.... The resulting algorithm has several tuning parameters, such as u°,
T°, X or the stop condition A similar drawback “necessity of tuning” has also
been found in Boltzman scheme T*+! = Tk /(1 4+ A\T*). A self-calibrating variant
of the cooling scheme also exists and can be used to alleviate this issue.

Since values of W (u*) change “randomly” for subsequent k, the final answer
of m-SA is determined as LB = max{W (u"), W(u'),...}. Additionally, in each
iteration k we can employ an auxiliary heuristic to order jobs according to non-
decreasing values S¥ (just as with the SUB method). This way, we can obtain a
sequence of UBs and compute UB = max{UB(S"), UB(S!),...}.

5.3 Hybrid Approaches

Here we will discuss a few modifications to SUB and m-SA in order to improve
their computation complexity and convergence. We will start with modification
to model (21) which can include: (1) initializing u® with random values, (2)
guided control of sequence 7*, (3) random control of sequence v*. Option (1) is
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obvious, as zero values in u result in unfavorable behavior of W (u) in the initial
phase for both SUB and m-SA. This is caused by min L(S,U) overlapping all
jobs at time 0, which results in W (u) failing to increase at first. We will now
consider options (2) and (3) to increase the speed of convergence of W (u) to UB.

Guided control aims to automatically adjust v* to shorten the initial phase
with unfavorable values W (u). One such approach is to set 7% ~ 2.0 and then
reduce v* by half if there was no improvement of W (u*) in the last 5 iterations.
Another method uses the lower-raise principle as follows. If W (u*) decreases
then we set v*t1 = o -~4*, o < 1; if it increases then we set 4*T1 =7.~4% 7> 1.
Values o and 7 should be close to 1.

Random changes of 7% can be seen as another variant of SA The approach
introduces a small random perturbation to 7* in (21). The resulting random
variable 7* has an average value change according to (21). Practice indicates that
such randomness prevents the “zig-zag” pattern specific to SUB from occurring.

6 Numerical Experiment

To illustrate the qualities and applicability of the above methods for computing
LB and UB values, we have implemented them in a few variants as follows:

1. SUB4 — SUB with sequence o = 7, ¢ = 1; pink dashed line in figures.

2. SUBp — SUB with o = \/C/?’ ¢ = 1; green dash-dotted line in figures.

3. SUB¢ — SUB with formulas (21)—(22) applied, where v starts at 2 and is
halved if W (u) has not improved in 5 iterations; dotted blue line in figures.

4. SUBp — SUB with formulas (21)-(22) applied, where v* is a random variable

from uniform [0.95;1.05] distribution; brown solid line in figures.

SA 4 — m-SA with v =u, A = 0.99, T° = 1000, dashed red line in figures.

6. SAp — m-SA with «® = u, A = 0.9, 7" = 100; dotted orange line in figures.

ot

Initially elements of u are set to random values from interval u; € [—1.5...3.5],
t=1,...,H. All methods were coded in Julia 1.7. The experiments were run
on a machine with Intel Xeon CPU E5-2680 v3 12-core processor with 2.5 GHz
clock and 64 GB of RAM under Windows 10. To allow comparison, all plots
were generated from the same problem instance with n = 30, generated using
the method from OR-library [15|. Values p;, w; and d; were random integers
from intervals [1;100], [1;10] and [0.2; 0.6] respectively. The horizontal line in all
figures represents the optimal solution value for the instance.

Use of the harmonic sequence (Fig. 5a) for « in the SUB method has guaran-
teed convergence, but in practice, this approach is very slow, ultimately leaving
a large gap between LB and UB (also see Fig.2a and 3a). The choice of the
constant c¢ is also troublesome. Decreasing the rate of o convergence to zero
(Fig. 5b) usually improves the results (again see Fig. 2a and 3a).

Despite no theoretical convergence proof, the more complex model using 7,
W (u) and UB (see Fig. 5¢ and 5d) is behaving much more stable, providing better
values LB and UB (also see Fig.2a and 3b). Curiously, the randomly oscillat-
ing v approach appears significantly better than its deterministic counterpart
(Fig. 3b).
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The behavior varied from instance to instance, but the observations shown
above appear typical. The presented example of using SA confirms that the idea
of using locals-search metaheuristics for this task instead of the SUB method
is promising. The tested example shows a good convergence speed compared to
the SUB method (see Fig. 2a and 2b), despite the fact that next to no tuning for
SA was performed. Thus, with proper tuning, it should be possible to improve
SA further. Moreover, self-tuning can be applied to SA, removing the tedious
process that remains so troublesome and time-consuming for the SUB method.

7 Conclusions and Future Work

An approach to total weighted tardiness minimization using Lagrange relaxation
was shown to (1) obtain a lower bound for branch-and-bound and (2) solve the
original problem. A few algorithm variants based on subgradient and simulated
annealing methods were proposed. The examples shown indicated: (1) the effec-
tiveness of the considered approach, (2) the competitiveness of the simulated
annealing, (3) difficulties in tuning for the subgradient method.

Due to promising results, future work on this topic encompasses three main
directions. The first direction seeks to confirm the quality of the results on a
larger set of literature benchmark instances with a larger number of jobs. The
second direction aims to improve the tuning of the proposed methods,especially
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the hybrid ones. The third direction aims to decrease the computational complex-
ity of the lower problem. Some of the above research ideas are already underway,
but could not be shown here due to publication size restrictions.
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