
Determination of the Lower Bounds of
the Goal Function for a Single-Machine

Scheduling Problem on D-Wave Quantum
Annealer
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Abstract. The fundamental problem of using metaheuristics and
almost all other approximation methods for difficult discrete optimiza-
tion problems is the lack of knowledge regarding the quality of the
obtained solution. In this paper, we propose a methodology for efficiently
estimating the quality of such approaches by rapidly – and practically in
constant time – generating good lower bounds on the optimal value of
the objective function using a quantum machine, which can be an excel-
lent benchmark for comparing approximate algorithms. Another natural
application is to use the proposed approach in the construction of exact
algorithms based on the Branch and Bound method to obtain real opti-
mal solutions.
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1 Introduction

The concept of quantum computing and computers was independently intro-
duced in the early 1980s. Since then, it has soaked up very significant devel-
opments in theory and, most importantly, in the last 20 years, in machines
implementing quantum computing paradigms. Currently, the two leading types
of quantum machines are quantum gate-based computers, developed mainly by
IBM and Google, and adiabatic quantum computing (AQC), developed by D-
Wave and NEC. In the gate-based model, calculations are performed by applying
unitarity gates to quantum bits (i.e. qubits), whose states can be read out at the
end of the calculation. In contrast, in AQC, in particular quantum annealing, a
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starting state of the system modeled in hardware on multiple qubits is prepared
as the ground state of the Hamiltonian encoding the solution to the desired opti-
mization problem, to which adiabatic evolution is then applied, aiming at the
minimal-energy state of the whole system. Most importantly, it is shown that the
AQC is polynomially equivalent to a universal gate-based quantum computer,
since any quantum circuit can be represented as a time-dependent Hamiltonian
with at most polynomial charge [1].

There are quite a few descriptions in the literature of transforming classical
NP-hard combinatorial optimization problems into forms suitable for quantum
annealers [3]. These can be represented in Ising form using a −1, 1 basis (rep-
resenting spins), or as a quadratic unconstrained binary optimization (QUBO)
problem using a binary basis. These two forms are equivalent. This makes it
easy to solve difficult discrete optimization problems – with some (unknown) –
approximation. However, there is so far no description in the literature of meth-
ods that can quickly indicate the error of such an approximation. In this paper,
we try to fill this research gap by proposing the idea of determining a lower bound
on the value of the objective function of an optimization problem by solving with
quantum annealing a dual problem resulting from Lagrange relaxation.

2 Formulation of the Problem

We will present the method of constructing a lower bound on the D-Wave quan-
tum machine using the example of the NP-hard single-machine Total Weighted
Tardiness Problem (TWTP), denoted in the literature by 1||∑ wiTi. There is
given a set of tasks J = {1, 2, ..., n}, which must without interruption be exe-
cuted on a single-machine. The start of the tasks begins at time 0. At any time,
a machine can execute at most one task. The following are associated with each
task i ∈ J : execution time pi, critical line di, and weight of penalty function wi.
For a fixed order of execution of tasks on the machine, let Si be the starting
moment and Ci = Si + pi the ending moment of the execution of task i ∈ J .
Then, delay Ti= max{0, Ci−di}, and cost of tardiness (penalty) fi(Ci) = wi ·Ti.
The TWTP problem considered in this paper consists in determining the exe-
cution schedule of the machine described by Si, Ci, i ∈ J with a minimal total

cost
n∑

i=1

fi(Ci) =
n∑

i=1

wiTi.

The task execution schedule described by the sequences Si, Ci, i ∈ J is
feasible if the following constraints are met:

Si + pi ≤ Sj ∨ Sj + pj ≤ Si, i �= j, i, j = 1, 2, . . . , n, (1)

Si ≥ 0, Ci = Si + pi, i = 1, 2, . . . , n. (2)

The single-machine problem of minimizing the sum of delay costs formulated
above is NP-hard. Optimal algorithms for solving the problem based on the
methods of dynamic programming, i.e. on Lagrange relaxation and branch and
bound, are described in the works by (Potts [6], and Wodecki [12]). These algo-
rithms are time consuming, thus in practice, small-scale examples can be solved
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on classical computers with their help. These are mainly metaheuristics that have
been widely used since the 1990s: tabu search (Bożejko et al. [4], Uchroński [10]),
dynamic programming (Rostami et al. [9]), simulated annealing (Potts and Van
Wassenhove [7]). Extensive reviews of the literature on scheduling problems with
due dates was also presented by Adamu and Adewumi [2]. The literature also
deals with single-machine scheduling problems with uncertain execution times
or desired completion dates: Rajba and Wodecki [8], Bożejko et al. [5].

3 Determining the Lower Bound on the D-Wave
Quantum Machine

The calculation of the lower bound of the objective function will be performed
in two steps. In step one, for a quantum computer, using Lagrange relaxation
we will define a dual optimization problem that will be maximized on a QPU.
In step two, using a classical CPU, the exact value of the lower bound will be
determined based on the results obtained in step one.

Let us consider a certain optimization problem having the following prop-
erty: its solution (in the sense of value) is always less than or equal to the
optimal one. A relaxed version of the problem considered in this paper using
the Lagrange function has this property. The relaxation will be governed by the
non-overlapping constraint (i.e. their decouplability), the inequality of the (1).

For simplicity of notation, let us assume that the tasks are executed in the
natural order of π, π(i) = i. The TWTP problem under consideration can be
written in the form of an optimization task:

min
S

n∑

i=1

wiTi (3)

subject to

Si + pi − Sj ≤ K(1 − yij), j = i + 1, . . . , n, i = 1, . . . , n, (4)

Sj + pj − Si ≤ Kyij , j = i + 1, . . . , n, i = 1, . . . , n, (5)

yij ∈ {0, 1}, j = i + 1, . . . , n, i = 1, . . . , n, (6)

Si ≥ 0, i = 1, . . . , n, (7)

where K is some sufficiently large number. In turn, yij is a binary variable
equal to 1 if the task i precedes j and 0 otherwise. The Lagrange function with
multipliers uij and vij , i, j = 1, 2, . . . , n takes for the vector S = (S1, S2, . . . , Sn)
and the matrix y = [yij ]n×n the form:

L(S, y, u, v) =
n∑

i=1

wiTi +
n∑

i=1

n∑

j=i+1

uij(Si + pi − Sj − K(1 − yij))

+
n∑

i=1

n∑

j=i+1

vij(Sj + pj − Si − Kyij)
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Transforming this expression we obtain

L(S, y, u, v) =
n∑

i=1

Li(Si, u, v) + K

n∑

i=1

n∑

j=i+1

Qij(yij , u, v) + V (u, v). (8)

where

Li(Si, u, v) = wiTi + αiSi, αi =
n∑

j=i+1

(uij − vij) +
i−1∑

j=1

(vji − uji),

Qij(yij , u, v) = (uij − vij)yij , V (u, v) =
n∑

i=1

pi

⎛

⎝
i−1∑

j=1

vji +
n∑

j=i+1

uij

⎞

⎠ .

Let us note that if S∗ is an optimal solution to the TWTP problem, then for
any non-negative u, v ≥ 0 there is a

n∑

j=1

wjTj ≥
n∑

j=1

wjTj +
n∑

i=1

n∑

j=i+1

uij(S∗
i + pi − S∗

j − K(1 − yij))

+
n∑

i=1

n∑

j=i+1

vij(S∗
i + pi − S∗

j − Kyij) ≥ min
S

min
y

L(S, y, u, v).

Therefore, when looking for a good lower bound, one should compute

LB = max
u,v

min
S,y

L(S, y, u, v) = max
u,v

(
n∑

i=1

min
0≤Si≤T−pi

Li(Si, u, v)

+K

n∑

i=1

n∑

j=i+1

min
y

Qij(yij , u, v) + V (u, v)

⎞

⎠ (9)

whereby the maximization with respect to u and v can be approximate, while
that with respect to S and y is exact.

Determination of Lower Bound (Step 1) on a D-Wave Quantum Annealer. Let
us note that the lower bound (9) can be written as a minimization of the opposite
(minus) value, with constraints:

LB = − min
u,v,S,y

⎡

⎣−
⎛

⎝
n∑

i=1

Li(Si, u, v) + K

n∑

i=1

n∑

j=i+1

Qij(yij , u, v) + V (u, v)

⎞

⎠

⎤

⎦

(10)
s.t.

Li(Si, u, v) ≤ Li(0, u, v), i = 1, 2, . . . , n, (11)
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Li(Si, u, v) ≤ Li(1, u, v), i = 1, 2, . . . , n, (12)

...

Li(Si, u, v) ≤ Li(T − pi, u, v), i = 1, 2, . . . , n, (13)

and
Qij(yij , u, v) ≤ Qij(0, u, v), i, j = 1, 2, . . . , n, (14)

Qij(yij , u, v) ≤ Qij(1, u, v), i, j = 1, 2, . . . , n, (15)

where each of the constraints (11)–(13) of the form Li(Si, u, v) ≤ Li(t, u, v),
i = 1, 2, . . . , n, n = 0, 1, . . . , T −pi, where Li(Si, u, v) = wiTi+αiSi is technically
written in the D-Wave machine program as one of two constraints – each of
(11)–(13) is encoded as expressed in the Algorithm 1, since in the constraints
of the QUBO model, there cannot be a function maximum resulting from the
formula to calculate the delay for a task i starting at time t equalling Ti(t) =
max{0, t + pi − di}.

Algorithm 1: Adding S minimalization constraints to the QUBO model
1 for i = 1, 2, . . . , n do
2 for t = 0, 1, 2, . . . , T − pi do
3 if (t + pi − di > 0) then
4 Add constraint Li(Si, u, v) ≤ wi · (t + pi − di) + αj · t

5 else
6 Add constraint Li(Si, u, v) ≤ wi · 0 + αi · t

The task formulated in this way can already be directly implemented on a D-
Wave machine since all constraints, as well as the objective function, are linear.
The difficulty is the possible suboptimality of the resulting quantum annealing
vector S and binary matrix y with respect to the formulation (9).

4 Experimental Research

To verify the effectiveness of the proposed method of determining the lower
bound, computational experiments were carried out on the quantum algorithm
implemented on the D-WAVE quantum annealer and the algorithm determining
the lower bound on a classical silicon computer with an i7-12700H 2.30 GHz
processor. The research was carried out on 30 instances divided into three groups
of 10 instances each. Instance groups differ in the number of tasks. A full set of
test instances can be found in [11].
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Table 1 presents the results of experimental research, in particular, in col-
umn 1 there is LBQ determined by the quantum algorithm, while in column 3
there is LBCPU determined by the classical algorithm. Columns 2 and 4 show
the time of quantum computations and computations on a classical computer,
respectively. In addition, column 5 includes the acceleration of calculations and
the relative difference of the LB value as a measure of the quality assessment
of the generated solutions (column 6), determined as Quality = LBQ−LBCPU

LBCPU .
Analyzing the results presented in the Table, we can conclude that in a sig-
nificant number of instances, the LB determined by the quantum annealer is
significantly greater than the LB determined on a classical computer. The LB
value determined by the annealer is not lower for all instances, with the LB
value determined on the CPU, and in 26 out of 30 instances it is better. For
the instance wt7 70 LBQ is nearly 200 times better than LBCPU . The Quantity
value occurs on average 17 times for the n = 5 group, 8 times for the group n = 6
and 92 times for the group n = 7. Comparing the calculation time of a quantum
exponent and a classical computer, we can conclude that the time of quantum
calculations is from 6 to nearly 140 times shorter than the time of calculations
on a classical computer. The advantage of quantum computing increases as the
number of tasks increases. For the n = 5 group, it is on average 9 times lower,
while for the n = 8 group, it is 97 times lower on average (Fig. 1).

Fig. 1. Computation time of LB calculations on quantum processor QPU and silicon
processor CPU
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Table 1. The results of experiments.

example LBQ T imeQ LBCPU TIMECPU SPEED-UP Quality

wt5 40 423 15 0 183 12,20

wt5 41 2153 15 456 140 9,33 4,72

wt5 42 1657 15 300 103 6,87 5,52

wt5 43 1001 15 10 148 9,87 100,1

wt5 44 1588 15 116 115 7,67 13,69

wt5 45 2099 15 0 187 12,47

wt5 46 1791 15 604 116 7,73 2,97

wt5 47 2443 15 783 147 9,80 3,12

wt5 48 3353 15 1138 123 8,20 2,95

wt5 49 1578 15 358 100 6,67 4,41

wt6 70 469 15 0 202 13,47

wt6 71 3328 15 385 241 16,07 8,64

wt6 72 3563 15 290 359 23,93 12,29

wt6 73 2630 15 421 178 11,87 6,25

wt6 74 3216 15 612 312 20,80 5,25

wt6 75 1280 15 0 324 21,60 —

wt6 76 0 15 0 261 17,40 —

wt6 77 8 15 0 242 16,13 —

wt6 78 0 15 0 299 19,93 —

wt6 79 16 15 0 186 12,40 —

wt7 70 3049 15 15 450 30,00 203,27

wt7 71 3635 15 317 582 38,80 11,47

wt7 72 1395 15 0 282 18,80 —

wt7 73 3806 15 62 451 30,07 61,39

wt7 74 3117 15 0 420 28,00 —

wt7 75 2840 15 0 238 15,87 —

wt7 76 0 15 0 605 40,33 —

wt7 77 64 15 0 436 29,07 —

wt7 78 0 15 0 302 20,13 —

wt7 79 12 15 0 381 25,40 —

wt8 80 100 15 0 1407 93,80 —

wt8 81 1271 15 0 1278 85,20 —

wt8 82 992 15 0 1249 83,27 —

wt8 83 662 15 0 1576 105,07 —

wt8 84 292 15 0 945 63,00 —

wt8 85 481 15 0 1682 112,13 —

wt8 86 3522 15 0 2053 136,87 —

wt8 87 1961 15 0 1127 75,13 —

wt8 88 5529 15 0 1774 118,27 —

wt8 89 2333 15 0 1512 100,80 —
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5 Summary

This paper presents an algorithm for determining the lower bound on the value
of the objective function for the TWTP problem implemented on a D-Wave
quantum computer. The presented approach can be adapted to estimate the
value of the optimal solution of other NP-hard discrete optimization problems,
such as the commutator problem or multi-machine problems (e.g. job shop). A
natural direction for further research will be to apply the proposed method for
determining lower bounds on a quantum machine, together with the (natural)
determination of upper bounds by simply solving the problem formulated as
QUBO, also on a QPU, to the construction of an exact algorithm based on the
Branch and Bound method. This will allow – against the intuition associated
with the probabilistic nature of computation on QPUs – to the generation of
truly optimal solutions.
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