
Parallel Block-Based Simulated
Annealing for the Single Machine Total
Weighted Tardiness Scheduling Problem

Wojciech Bożejko1(B) , Jaros�law Pempera1 , Mariusz Uchroński1 ,
and Mieczys�law Wodecki2

1 Department of Control Systems and Mechatronics, Wroc�law University of Science
and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroc�law, Poland

{wojciech.bozejko,jaroslaw.pempera,mariusz.uchronski}@pwr.edu.pl
2 Department of Telecommunications and Teleinformatics, Wroc�law University

of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroc�law, Poland
mieczyslaw.wodecki@pwr.edu.pl

Abstract. This paper presents an algorithm based on the simulated
annealing technique for the problem of scheduling tasks on one machine
with the criterion of minimizing the sum of costs of tasks performed
overdue. We propose to use, for the first time in simulated annealing,
elimination criteria, the so-called blocks, allowing to not considered non-
perspective solutions from the neighborhood. The use of blocks with the
parallelization of the algorithm with the use of the MPI library allowed
to improve the algorithm’s efficiency in the same number of steps. Addi-
tionally, we propose to extend the benchmark database with new large
test instances for which the block properties are most fully presented.

1 Introduction

Single-machine tasks scheduling problems with cost goal functions have a very
long history – over 50 years (the first work of Rinnoy Kan et al. [8] appeared
in 1977). Despite the simplicity of the formulation they mostly belong to the
class of NP-hard problems. They are important both from the point of view
of theory and practice. Such problems often constitute a significant part of the
more extensive production systems. Different variants of single-machine tasks
scheduling are still intensively tested and the obtained results are the inspiration
for much more complex research on multi-machine problems. In the description
of the considered in this chapter problem we will use some definitions, notations
and properties presented in Wodecki’s paper [13].

We propose to use the so-called ‘block eliminating properties’. For the flow
shop scheduling problem such algorithm were presented by Grabowski and
Wodecki [2]). Blocks allow its users for both: reduction of calculations time,
as well as improving the value of designated solutions. For the considered in this
work one-machine problem TWT, in the works of Wodecki [13] and [14] there
were two types of blocks presented, the so-called early task blocks and tardy
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Sanjurjo González et al. (Eds.): SOCO 2021, AISC 1401, pp. 758–765, 2022.
https://doi.org/10.1007/978-3-030-87869-6_72

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87869-6_72&domain=pdf
http://orcid.org/0000-0002-1868-8603
http://orcid.org/0000-0002-0614-0085
http://orcid.org/0000-0002-9185-1841
http://orcid.org/0000-0001-8188-4503
https://doi.org/10.1007/978-3-030-87869-6_72

Parallel Block-Based Simulated Annealing for the Single Machine 759

task blocks. Below, we briefly present the basic definitions and properties of the
problem under consideration.

2 Problem Description

A single-machine scheduling problem with due-dates of tasks completion times
(Total Weighted Tardiness Problem, abbreviated as TWT) will be defined as
follows. Let J = {1, 2, . . . , n} be a set of tasks, each of which should be performed
without interruption on the machine executing at most one task at a given time.
For the task i ∈ J (i = 1, . . . , n) we define: pi – execution time, wi– penalty
for tardiness, and di – requested date for completion of execution (so-called
due-date).

Let π = π(1), π(2), . . . , π(n) be any permutation of elements from J , and Φ

a set of all such permutations. Then, Cπ(i) =
∑i

j=1 pπ(j) is a completion date of
task π(i) ∈ J , executed as i-th in order. If Cπ(i) ≤ dπ(i), then the task is called
early, otherwise - tardy.

Tardiness of task Tπ(i) = max{0, Cπ(i) − dπ(i)}, and the cost of its execution
f(π(i)) = wπ(i)Tπ(i). By

F(π) =
n∑

i=1

wπ(i)Tπ(i). (1)

we denote the cost of execution of all tasks (weigh of permutation π).
The problem under consideration (which will be also called a deterministic

problem) consists in determining the permutation of π∗ ∈ Φ with the smallest
weight i.e. such that

F(π∗) = min {F(π) : π ∈ Φ} . (2)

In the literature, this problem is denoted by 1||
∑

wiTi and belongs to the
class of NP-hard problems (Lenstra et al. [5]). Optimal algorithms for solv-
ing it based on the dynamic programming method were presented by Sahni
[10] (for integer data this algorithm has the complexity O(nmin{

∑
j pj ,

∑
j wj ,

maxj{dj}})) and, based on the branch and bound, Potts, Van Wassenhove [7],
Villareal, Bulfin [12] and Wodecki [14]. Optimal (exact) algorithms enable effec-
tive determination of examples of optimal solutions whose number of tasks does
not exceed 80 (parallel algorithm, Wodecki [14]). Therefore, in practice there are
usually approximate algorithms (mainly metaheuristics) used (tabu search algo-
rithm, Bożejko et al. [1]). A very effective iterated local-search method has been
proposed by Kirkik and Oguz [4]. The key aspect of the method is its ability
to explore an exponential-size neighborhood in polynomial time by a dynamic
programming technique.

3 Block Elimination Properties

Let π ∈ Φ be n-element permutation - solution to the TWT. The sequence the
following one after another elements from π

α = (π(a), π(a + 1), . . . , π(b)),

where 1 ≤ a ≤ b ≤ n is called subpermutation of permutation π.

760 W. Bożejko et al.

Definition 1. Subpermutation of tasks πT in permutation π ∈ Φ is called a
T -block, if:

a) each task j ∈ πT is early and dj ≥ Clast, where Clast is the date of
completion of the last task from πT ,
b) πT is a maximum subpermuation meeting the constraint (a).

It is easy to see that if πT is T -block, then there is fulfilled the inequality

min{dj : j ∈ πT } ≥ Clast.

Definition 2. Subpermutation of tasks πD in permutation π ∈ Φ is called of
D-block, if:

a′) each task j ∈ πD is tardy and dj < Sfirst +pj , where Sfirst is the date
of starting the first task from πD,
b′) πD is the maximum subpermutation satisfying the constraint (a′).

In this case, in any permutation of elements from πD each task (belonging to
πD), even swapped to the first position, is tardy in permutation π.

In the paper [13] there was a theorem proved.

Theorem 1. For any permutation π ∈ Φ there is a division of π into subper-
mutations such, that each of them is:

i) T -block or
ii) D-block.

Algorithm partitioning n-element permutation into blocks was described by [13]
and has computational complexity of O(n).

Definition 3. Let B = [B1, B2, . . . , Bs] be partitioning of permutation π into
blocks. If in D-blocks the tasks occur according to relation

wπ(i−1)

pπ(i−1)
≥

wπ(i)

pπ(i)
, i = a, a + 1, . . . , b, (3)

then π will be called D-optimal and will be in short denoted by D-opt.

The following theorem applies to the specific properties of blocks in solutions to
the TWT problem and provides the basis for elimination (through an interme-
diate review) of certain elements of solutions space. It is successfully used in the
algorithms based on the local search method.

Theorem 2 (Wodecki [13]). For each ordered permutation π ∈ Φ if a
permutation β was obtained from π by any interchange of its elements and
F(β) < F(π) then in the permutation β at least one task a block (T or D-opt)
of π was moved before the first or the last task of this block.

Parallel Block-Based Simulated Annealing for the Single Machine 761

In order to eliminate from the neighborhood some solutions, generated by ‘insert’
type moves there were ‘block eliminating properties’ (Theorem 2) used.

Let Bk (k = 1, 2, . . . , s) be the k-th block in permutation π ∈ Φ. For job
j ∈ Bk by N bg

k (j) let us denote a set of permutations created by moving job
j to the beginning of block Bk (before first job in block). Analogously, for job
j ∈ Bk by N ed

k (j) let us denote a set of permutations created by moving job j
to the end of the block Bk (after the last job in block). The neighborhood of the
solution π ∈ Φ:

N (π) =
s⋃

j=1

⋃

j∈Bk

(N bg
k (j) ∪ N ed

k (j)). (4)

4 Parallel Simulated Annealing Metaheuristic

Simulated Annealing (SA) is a stochastic heuristic algorithm which explores the
solution space using randomized search procedure. The method was first applied
to combinatorial problems by Kirkpatrick et al. [3]. In each iteration the SA
algorithm a random perturbation is mode to the current solution π ∈ Φ, giving
rise to the set N (π) of neighbors. The neighbor β ∈ N (π) is accepted as the
next configuration with probability function Ψ(π, β, T). The Ψ(π, β, T) is known
as accepting function and depends on control parameter T (temperature). Its
value changes suitably chosen intervals. In practice the accepting function is
chose in such way that solutions corresponding to large increases in cost have
a small probability of being accepted, whereas solutions corresponding small
increases in cost have a larger probability of being accepted. The main objective
is to escape from local optima keeping the convergence of the whole searching
process. Change of temperature follows according to the cooling scheme. Initial
T0 is determined experimentally. The most common acceptance function in SA
algorithm is Boltzman function Ψ(π, β, T) = exp([F (β)−F (π)]/T (where π ∈ Φ
and β ∈ N (π)), geometrical cooling scheme T ← c · T (0 < c < 1) and insert
moves.

The proposed parallel SA algorithm has been parallelized using the MPI
library using an idea of multiple independent search processes of different start-
ing points (MSSS due to Voß [9] classification) On the supercomputer cluster
platform, there were parallel processes implemented with mechanism of diver-
sifying of starting solutions, based on the Scatter Search algorithm’s idea, with
using MPI Scatter procedure. A parallel reduction mechanism (MPI Reduce) was
used to collect the data. The idea of the parallelization is given in Fig. 1. Both
parallel SA with and without block-based neighborhood were implemented.

762 W. Bożejko et al.

Fig. 1. Simulated annealing parallelization scheme

5 Computational Experiments

The parallel simulated annealing algorithm has been implemented in C++ and
parallelized with MPI library. The calculations were performed on the BEM
cluster located in the Wroc�law Center for Networking and Supercomuting.

Calculations were made using two data sets of various sizes and degrees
of difficulty. The first data set includes 375 examples of three different sizes
(n = 40, 50, 100). This data set with the best solutions is placed on the OR-
Library [6] website. The second data set was generated by authors in following
way:

• pi – random integer from range [1, 100] with uniform distribution,
• wi – random integer from range [1, 10] with uniform distribution,
• di – random integer from range [P (1 − TF − RDD/2), P (1 − TF + RDD/2)]

with uniform distribution.

Where P =
∑v

i=1 pi, RDD = 0.2, 0.4, 0.6, 0.8, 1.0 (relative range of due dates)
and TF = 0.2, 0.4, 0.6, 0.8, 1.0 (average tardiness factor). For each of the 25
pairs of values of RDD and TF five instances were generated. For each value of
n = 200, 500, 1000 125 instances were generated – 325 in total. This data set was
published on web page [11].

Computation was performed of two variants of simulated annealing algorithm
(with blocks – SAb and without blocks – SA) using test instances from previ-
ously mentioned data sets. Fore each solution the percentage relative error was
determined with a formula PRD = Fref−Falg

Fref
· 100%, where:

– Fref – value of the reference solution (from OR-Library for wt40, wt50, wt100
test instances and obtained with META (the best from SWPT, EDD, AU and
COVERT rules, see [7]) algorithm for wt200, wt500, wt1000 test instances),

– Falg – the value of the solution determined by tested algorithm (SA or SAb).

Parallel Block-Based Simulated Annealing for the Single Machine 763

Table 1, 2 and 3 presents results (PRD values) for parallel simulated anneal-
ing algorithm with and without blocks for test instances with sizes n =
{40, 50, 100, 200, 500, 100}. Experiments have been conducted for number of
processors p = {8, 16, 32, 64}. PRD values from Table 1 have been calculated
using cost functions reference values from OR-Library. For test instances sizes
n = {40, 50, 100} there is no significant profit from using blocks – only for
n = 100 results were little better for algorithm with blocks. Increasing number
of processors results in smaller PRD values. PRD values from Table 2 and 3 have
been calculated using cost functions values obtained with META algorithm (that
is why they are negative). For bigger problem sizes n = {200, 500, 1000} impact
of using blocks on solution quality is more visible especially for n = 200 and
500. Similar as for previous data set increasing number of processors results in
better solution quality.

Table 1. Results for parallel simulated annealing (it = 100)

Number of processors wt40 wt50 wt100

SA SAb SA SAb SA SAb

8 0.21 0.13 0.29 0.29 0.11 0.16

16 0.08 0.40 0.12 0.17 0.08 0.04

32 0.05 0.10 0.12 0.01 0.07 0.07

64 0.04 0.03 0.04 0.10 0.06 0.02

Average 0.09 0.17 0.14 0.14 0.08 0.07

Table 2. Results for parallel simulated annealing (it = 100), META as a reference

Number of processors wt40 wt50 wt100

SA SAb SA SAb SA SAb

8 −7.08 −7.15 −7.32 −7.33 −8.71 −8.67

16 −7.18 −6.91 −7.47 −7.42 −8.73 −8.76

32 −7.21 −7.16 −7.47 −7.54 −8.74 −8.74

64 −7.21 −7.22 −7.21 −7.22 −8.75 −8.77

Average −7, 17 −7, 11 −7, 37 −7, 38 −8, 73 −8, 74

764 W. Bożejko et al.

Table 3. Results for parallel simulated annealing (it = 100), META as a reference

Number of processors wt200 wt500 wt1000

SA SAb SA SAb SA SAb

8 −10.04 −10.06 −10.12 −10.16 −10.39 −10.38

16 −10.06 −10.10 −10.12 −10.23 −10.09 −10.08

32 −10.10 −10.12 −10.22 −10.25 −10.10 −10.09

64 −10.10 −10.12 −10.24 −10.27 −10.10 −10.09

Average −10, 08 −10, 10 −10, 18 −10, 23 −10, 17 −10, 16

6 Conclusions

Using blocks in parallel simulated annealing algorithm results in better solu-
tions for bigger problem sizes in comparison with algorithm without blocks. Also
increasing number of used parallel processors for computation results in increas-
ing of obtained solutions (in sense of cost function value). We propose new large
test examples for the problem under consideration, with sizes n = 200, 500 and
1000, because the ones used so far are already too small for modern algorithms.

Acknowledgments. The paper was partially supported by the National Science
Centre of Poland, grant OPUS no. 2017/25/B/ST7/02181, grant no. 8211104160
K34W04D03 of Wroc�law University of Science and Technology, and computational
grant No. 96 of Wroc�law Centre for Networking and Supercomputing.

References

1. Bożejko, W., Grabowski, J., Wodecki, M.: Block approach-Tabu search algorithm
for single machine total weighted tardiness problem. Comput. Ind. Eng. 50(1/2),
1–14 (2006)

2. Grabowski, J., Wodecki, M.: A very fast Tabu search algorithm for the permutation
flow shop problem with makespan criterion. Comput. Oper. Res. 31, 1891–1909
(2004)

3. Kirkpatrick, S., Gellat, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 26, 53–67 (1983)

4. Kirlik, G., Oguz, C.: A variable neighborhood search for minimizing total weighted
tardiness with sequence dependent setup times on single machine. Comput. Oper.
Res. 39, 1506–1520 (2012)

5. Lenstra, J.K., Rinnoy Kan, A.H.G., Brucker, P.: Complexity of machine scheduling
problems. Ann. Discrete Math. 1, 343–362 (1977)

6. OR Library: http://people.brunel.ac.uk/∼mastjjb/jeb/info.html
7. Potts, C.N., Van Wassenhove, L.N.: Algorithms for scheduling a single machine to

minimize the weighted number of late tasks. Manage. Sci. 34(7), 843–858 (1988)
8. Rinnoy Kan, A.H.G., Lageweg, B.J., Lenstra, J.K.: Minimizing total costs in one-

machine scheduling. Oper. Res. 25, 908–927 (1975)

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

Parallel Block-Based Simulated Annealing for the Single Machine 765

9. Voß, S.: Tabu search: applications and prospects. In: Du, Z., Pardalos, P.M. (eds.)
Network Optimization Problems: Algorithms, Applications and Complexity, pp.
333–353. World Scientific Publishing Co, Singapore (1993)

10. Sahni, S.K.: Algorithms for scheduling independent tasks. J. Assoc. Comput.
Match 23, 116–127 (1976)

11. Uchroński, M.: Test instances for a single-machine total weighted tardiness schedul-
ing problem. https://zasobynauki.pl/zasoby/51561

12. Villareal, F.J., Bulfin, R.L.: Scheduling a single machine to minimize the weighted
number of tardy tasks. IEE Trans. 15, 337–343 (1983)

13. Wodecki, M.: A block approach to earliness-tardiness scheduling problems. Adv.
Manuf. Technol. 40, 797–807 (2009). https://doi.org/10.1007/s00170-008-1395-7

14. Wodecki, M., Bound, A.B.: Parallel algorithm for single-machine total weighted
tardiness problem. Adv. Manuf. Technol. 37, 996–1004 (2008)

https://zasobynauki.pl/zasoby/51561
https://doi.org/10.1007/s00170-008-1395-7

	Parallel Block-Based Simulated Annealing for the Single Machine Total Weighted Tardiness Scheduling Problem
	1 Introduction
	2 Problem Description
	3 Block Elimination Properties
	4 Parallel Simulated Annealing Metaheuristic
	5 Computational Experiments
	6 Conclusions
	References

