
Parallel Neighborhood Search

for the Permutation Flow Shop

Scheduling Problem

Wojciech Bożejko , Jarosław Rudy , and Mieczysław Wodecki

Abstract In this chapter we consider the classic flow shop problem of task schedul-

ing, which is a representative problem for a larger group of problems in which

the solution is represented by permutation, such as Traveling Salesman Prob-

lem, Quadratic Assignment Problem, etc. We consider the most expensive (time-

consuming) part of the local search algorithms for this class, which is search of

the neighborhood of a given solution. We propose a number of methods to effec-

tively find the best element of the neighborhood using parallel computing for three

well-known neighborhoods: Adjacent Pair Interchange, Insert and Non-adjacent Pair

Interchange. The methods are formulated as theorems for the PRAM model of par-

allel computation. Some of the methods are cost-optimal.

Keywords Flow Shop scheduling · Discrete optimization · Parallel computing ·
Local search

W. Bożejko

Department of Control Systems and Mechatronics, Faculty of Electronics,

Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego St., 50-372

Wrocław, Poland

e-mail: wojciech.bozejko@pwr.edu.pl

J. Rudy (B)

Department of Computer Engineering, Faculty of Electronics,

Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego St., 50-372

Wrocław, Poland

e-mail: jaroslaw.rudy@pwr.edu.pl

M. Wodecki

Telecommunications and Teleinformatics Department, Faculty of Electronics,

Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego St., 50-372

Wrocław, Poland

e-mail: mieczyslaw.wodecki@pwr.edu.p

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

G. Bocewicz et al. (eds.), Performance Evaluation Models for Distributed

Service Networks, Studies in Systems, Decision and Control 343,

https://doi.org/10.1007/978-3-030-67063-4_2

21

22 W. Bożejko et al.

1 Introduction

The permutation flowshop problem with makespan criterion (here denoted as

F∗||Cmax) is one of the oldest and most well-known, classic scheduling problems.

Scientific papers related to this problem have been appearing for over 50 years now.

Despite its simple formula and a finite set of solutions, the problem belongs to one

of the hardest combinatorial optimization problem classes: the strongly NP-hard

problems. Due to this, it is often used to test new ideas, properties and methods

of construction of solving algorithms. Many papers concerning this problem have

emerged in the literature, including research on fast, non-exact solving algorithms

based on iterative improvement of solutions. A considerable advancement in devel-

opment of such metaheuristic algorithms was possible thanks to the use of blocks

(see e.g. Nowicki and Smutnicki [13]). For more details on research and results for

this problem in recent years consider our previous works [8, 11]. Classification of

scheduling problems is proposed in the work of Graham et al. [9]. Recently, there is

a growing interest in bio-inspired, metaheuristic approaches, see [1, 7, 12, 14, 18].

For over a decade now, the increase of the number of cores in processors and pro-

cessors in a computer system has become a standard for development of computer

architectures. Such increase in computing power of parallel systems yields new pos-

sibilities, such as reduction of computation time, improved convergence capabilities

and obtaining of better solutions. One of the first parallel algorithms for the flowshop

problem was a Simulated Annealing method by Wodecki and Bożejko [16]. Parallel

algorithms are popular in solving scheduling problems and all also well-suited for

population-based metaheuristics (see e.g. [15]).

The key element of iterative improvement methods (including the best known

metaheuristics) in combinatorial optimizations problems is the procedure for gen-

eration and evaluation (search) of the neighborhood of a solution. This procedure

has crucial effect on computation time and quality of results. Thus, it is desirable

to apply parallel computation techniques to this procedure (see e.g. [10]). In this

chapter we consider several popular neighborhoods for the F∗||Cmax problem and

prove properties that can be used in parallel algorithms implemented on the PRAM (

Parallel Random Access Machine, see e.g. [6]) parallel computation model. It should

be noted that obtained results could be applied to similar permutation-based prob-

lems such as the Traveling Salesman Problem and Quadratic Assignment Problem.

Further results in this area can be found in the works of Bocewicz [2], Bocewicz et

al. [3, 4], and Wójcik and Pempera [17].

2 Permutation Flowshop Problem

Let J = {1, 2, . . . , n} and M = {1, 2, . . . , m} be sets of n jobs and m machines

respectively. Each job j is a sequence of m operations O1 j , O2 j , . . . , Omj . Operation

Oi j has to be processed on machine i for time pi j without interruption. Processing

Parallel Neighborhood Search for the Permutation Flow Shop Scheduling Problem 23

of job j on machine i > 1 can only start when that job had finished processing

on machine i − 1. A solution is a job processing schedule seen as matrices of job

starting times S = (S1, S2, . . . , Sn), where S j = (S1 j , S2 j , . . . , Smj) and completion

times C = (C1, C2, . . . , Cn), where C j = (C1 j , C2 j , . . . , Cmj). In practice, only one

matrix is needed to determine the schedule as Ci j = Si j + pi j .

For the makespan criterion the optimal schedule is always left-shifted. This allows

us to represent the schedule using job processing order, which is an n-element per-

mutation π = (π(1), π(2), . . . , π(n)) from the set Π of all possible permutations.

Each permutation π ∈ Π unequivocally determines the processing order of jobs on

all machines (the same for each machine). In order to determine Ci j using π , we use

the following recursive formula:

Ciπ(j) = max{Ci−1,π(j), Ci,π(j−1)} + pi,π(j),

i = 1, 2, . . . , m, j = 1, 2, . . . , n, (1)

with initial conditions Ci,π(0) = 0, i = 1, 2, . . . , m, C0,π(j) = 0, j = 1, 2, . . . , n, or

a non-recursive one:

Ci,π(j) = max
1= j0≤ j1≤...≤ ji = j

i
∑

s=1

ji
∑

j= ji−1

ps,π(j). (2)

Our goal is minimization of the makespan Cmax:

Cmax = max
j∈π,i∈M

Ci,π(j) = max
j∈π

Cm,π(j), (3)

thus we need to obtain permutation π∗ ∈ Π such that:

Cmax(π
∗) = min

π∈Π
Cmax(π). (4)

The values Ciπ(j) can be also determined using the graph model. For a given

processing order π we construct a lattice graph G(π) = (M × N , F0 ∪ F∗), where

M = {1, 2, . . . , m}, N = {1, 2, . . . , n} are vertices,

F0 =

m−1
⋃

s=1

n
⋃

t=1

{((s, t), (s + 1, t))} (5)

is a set of vertical arcs denoting technological order of processing of operations from

a given job and

F∗ =

m
⋃

s=1

n−1
⋃

t=1

{((s, t), (s, t + 1))} (6)

24 W. Bożejko et al.

Fig. 1 Structure of a lattice graph G(π)

is the set of horizontal arcs denoting the job processing order π . The structure of

graph G(π) is shown in Fig. 1.

Arcs in graph G(π) have no weights while the weight of vertex (s, t) is ps,π(t).

Completion time Ci,π(j) of job π(j), on machine i is equal to the length of the longest

path starting at vertex (1,1) and ending at vertex (i, j) including the weights of those

vertices. For the F∗||Cmax problem the makespan Cmax(π) is equal to the critical

(longest) path in graph G(π).

3 Adjacent Pair Interchange Neighborhood

The API (Adjacent Pair Interchange, called also “swap”) neighborhood is one of

the simplest and most commonly used. The speedup for sequential algorithms for

the Cmax goal function is realized by the so-called (sequential) accelerator (see for

example [13]). Some of the theorems proven here are based on this accelerator, thus

we describe it in details below.

Let π be a permutation from which the API neighborhood is generated and v =

(a, a + 1) be a pair of adjacent positions. Swapping those positions in π generates

a neighboring solution π (v). For π we calculate:

rs,t = max{rs−1,t , rs,t−1 + ps,π(t)} (7)

for t = 1, 2, . . . , a − 1, s = 1, 2, . . . , m, and

qs,t = max{qs+1,t , qs,t+1 + ps,π(t)} (8)

Parallel Neighborhood Search for the Permutation Flow Shop Scheduling Problem 25

for t=a − 1, a − 2, . . . , 1, s=m, m − 1, . . . , 1, where r0,t = 0 = q j,t , t = 1, 2, . . . , n,

rs,0= 0 = qs,m+1, s = 1, 2, . . . , m. Value rs,t is the length of the longest path in the

lattice graph G(π) described in Sect. 2 that ends at vertex (s, t), including the weight

of that vertex, while qs,t is the length of the longest path starting at vertex (s, t),

including its weight. The weight of vertex (s,t) is ps,π(t). With this, each value

Cmax (π (v)) for an interchange of a single adjacent pair of jobs v = (a, a + 1) can be

found in time O(m) using the formula:

Cmax(π(v)) = max
1≤s≤m

(d ′
s + qs,a+2), (9)

where

d ′
s = max{d ′

s−1, ds} + ps,π(a), s = 1, 2, . . . , m, (10)

is the length of the longest path ending at vertex (s,a+1) in G(π) and

ds = max{ds−1, rs,a−1} + psπ(a+1), s = 1, 2, . . . , m (11)

is the length of the longest path ending at vertex (s,a) in graph G(π(v)). The starting

conditions are: d ′
0 = d0= 0, rs0 = 0 = qs,n+2, s = 1, 2, . . . , m. The API neighbor-

hood contains n − 1 solutions.

The goal of searching the API neighborhood for a permutation π is to find a permu-

tation in π(v), v = (a, a + 1), a = 1, 2, . . . , n − 1 such that the goal function value

is minimized. For the problem F∗||Cmax the complexity of that process is O(n2m),

but can be reduced to O(nm) using the accelerator described above.

In the proofs of theorems regarding computational complexity we will use the

following commonly known parallel algorithms facts (See Cormen et al. [6]):

Fact 1 Prefix sums of the input sequence can be determined on EREW (Exclusive

Read Exclusive Write) PRAM in the time O(log n) with using O(n/ log n) processors.

Fact 2 Minimal and maximal value of the input sequence can be determined on

EREW PRAM in the time O(log n) with using O(n/ log n) processors.

Fact 3 Values y = (y1, y2, . . . , yn) where yi = f (xi), x = (x1,x2, . . . , xn) can be

determined on CREW (Concurrent Read Exclusive Write) PRAM in time O(log n)

on O(n/ log n) processors.

Theorem 1 The API neighborhood for the F∗||Cmax problem can be searched in

time O(n + m) on the CREW PRAM using O(n2m
n+m

) processors.

Proof Disregarding relations between solutions, we assign O(nm
n+m

) processors to

each solution in the neighborhood. This allows to compute the goal function for

a single solution in time O(n + m) (see Bożejko [5]). Next, we need to choose the

minimal value among the n − 1 computed ones. This can be done in time O(log n)

using O(n/ log n) processors. The overall time complexity is still O(n + m) and the

number of processors used is (n−1)O(nm
n+m

) = O(n2m
n+m

). �

26 W. Bożejko et al.

The described method for the F∗||Cmax problem is not cost-optimal as its effi-

ciency drops quickly as n grows. Let us note that the algorithm from Theorem 1,

for the F∗||
∑

Ci problem and the API neighborhood is cost-optimal with efficiency

O(1) as the accelerator is not applicable for this problem.

Next we will make use of the relations between solutions in the neighborhood

and the accelerator to obtain a considerably stronger result.

Theorem 2 The search of the API neighborhood for the F∗||Cmax problem can be

done in time O(n + m) on the CREW PRAM using O(nm
n+m

) processors.

Proof Let v = (a, a + 1) be a pair of parallel positions. We will now employ the

API accelerator in this parallel algorithm. The values rs,t , qs,t are generated once, at

the start of the API neighborhood search process in time O(n + m) on the PRAM

model using O(nm
n+m

) processors. That method is cost-optimal.

Now, the API neighborhood search process can be divided into groups, with
⌈

n
p

⌉

position swaps in each group, where p =
⌈

nm
n+m

⌉

is the number of processors

used. The goal function calculations are independent in each group. Each processor

k = 1, 2, . . . , p will search part of the neighborhood that is obtained with moves v

in the form of:

v = ((k − 1)

⌈

n

p

⌉

+ a, (k − 1)

⌈

n

p

⌉

+ a + 1),

where a = 1, 2, . . . ,

⌈

n
p

⌉

for k = 1, 2, . . . , p − 1, and moves v in the form:

v = ((p − 1)

⌈

n

p

⌉

+ a, (p − 1)

⌈

n

p

⌉

+ a + 1),

where a = 1, 2, . . . , n − (p − 1)

⌈

n
p

⌉

− 1 for k = p. The last group might be

smaller than the others. Because the process of determining all values Cmax (π (v))

in a single group has complexity
⌈

n
p

⌉

O(m) = O(nm
p

) = O(nm
nm

n+m

) = O(n + m), thus

the complexity of determining all values Cmax (π (v)) for all moves v will be the same.

Each processor, sequentially calculating its portion of values Cmax (π (v)), can store

the best value. To that end, a number of comparisons equal to the group size minus

1 has to be made, meaning:
⌈

n
p

⌉

− 1 = O(n
p
) = O(n

nm
n+m

) = O(n+m
m

), which keeps

the complexity of the entire method at O(n + m). In order to determine the best

move from the entire neighborhood we need to find the minimal element among p

best goal function values stored for each group. This can be done in time O(log n)

using p = O(nm
n+m

) processors due to Fact 2. The complexity O(log p) of this stage,

through the following sequence of inequalities:

log p = log

⌈

nm

n + m

⌉

< log(
nm

n + m
+ 1) =

Parallel Neighborhood Search for the Permutation Flow Shop Scheduling Problem 27

= log(
nm + n + m

n + m
) = log(

(n + 1)(m + 1) − 1

n + m
) =

= (log((n + 1)(m + 1) − 1) − log(n + m) < log((n + 1)(m + 1)) =

= log(n + 1) + log(m + 1) < n + 1 + m + 1 (12)

does not increase the complexity O(n + m) of the entire method. �

The method is cost-optimal.

Below we present a different method of searching the API neighborhood for

the F∗||Cmax problem, running in shorter time, namely O(log(n + m) log(nm)).

However, this is at the cost of increased number of processors.

Theorem 3 The API neighborhood for F∗||Cmax can be searched on the CREW

PRAM in time O(log(n + m)(log(nm))) using O(n3m3/ log(nm)) processors.

Proof We employ the lattice graph G(π) from Sect. 2 and the API accelerator with

modified calculation scheme. The values rs,t , qs,t representing the lengths of the

longest paths respectively ending and starting at vertex (s, t) can be determined in

time O(log(n + m)(log(nm))) on the PRAM with O(n3m3 / log(nm)) processors

by employing the method of determining all longest paths between pairs of vertices.

From the properties of graph G(π) we know that the longest path ending at vertex

(s, t) starts at vertex (1,1), while the longest path starting at (s, t) ends at (n, m). Thus,

after determining the array of longest paths A, it can be used directly access values

rs,t , qs,t for each vertex (s, t), s = 1, 2, . . . , m, t = 1, 2, . . . , n. Next, we assign

O(m2/logm) processors to each of the n − 1 solutions from the API neighborhood

and we calculate the goal function value for a single solution obtained by move

v = (a, a + 1) in time O(log m) using the formulas (9)–(11). This process can be

described as follows. We write down (11) as:

ds = max{rs,a−1 + ps,π(a+1), rs−1,a−1 + ps−1,π(a+1) + ps,π(a+1), . . .

. . . , r1,a−1 + p1,π(a+1) + p2π(a+1) + · · · + psπ(a+1)} =

max
1≤k≤s

(rk,a−1 +

s
∑

t=k

pt,π(a+1)) = max
1≤k≤s

(rk,a−1 + P s
k,π(a+1)), (13)

where P s
k, j =

s
∑

t=k

pt, j , k = 1, 2, . . . , s are prefix sums, which can be calculated for

a given s in time O(log m) using O(m/ log m) processors in accordance with Fact 1.

We need the values Ps
k, j for all s = 1, 2, . . . , m and those can be determined in

parallel using O(m2/ log m) processors. After that we will have access to values P s
k, j

for each s = 1, 2, . . . , m i k = 1, 2, . . . , s for a given job j = π (a+1). There is no

more than m sums rk,a−1 + P s
k,π(a+1) in the formula (13), thus they can be calculated

in time O(log m) on O(m/ log m) processors (see Fact 3). To sum it up, for each

28 W. Bożejko et al.

s = 1, 2, . . . , m the value ds can be calculated in time O(log m) on O(m/ log m)

processors. Thus, all such values are determined in parallel in time O(log m) using

O(m2/ log m) processors. The same technique can be applied to formula (10):

d ′
s = max{d ′

s−1, ds} + ps,π(a) =

max{ds + psπ(a), ds−1 + ps−1,π(a) + psπ(a), . . . , d1 + p1,π(a) + p2,π(a) + · · · + psπ(a)} =

max
1≤k≤s

(dk +

s
∑

t=k

pt,π(a)) = max
1≤k≤s

(dk + P s
k,π(a)). (14)

Because all the required prefix sums P s
k,π(a) can be determined in time O(log m)

using O(m2/ log m) processors and values ds were determined earlier, the calcu-

lation of all values d ′
s , s = 1, 2, . . . , m can be done in parallel in time O(log m)

using O(m2/ log m) processors employing the rules for determining ds . In result,

we can determine Cmax(π(v)) = max
1≤s≤m

(d ′
s + qs,a+2) (see the formula (10)) in time

O(log m) using O(m/ log m) processors. This operation consists on performing

m additions d ′
s + qs,a+2, s = 1, 2, . . . , m, which can be done in time O(log m) on

O(m/ log m) processors (see Fact 3). Next, we determine the value of (10), that is

we calculate maximum from the m-element set, which can be done in time O(log m)

using O(m/ log m) processors (see Fact 2). Finally, using (n − 1)O(m2/ log m) =

O(nm2/ log m) processors we can determine the value of the goal function for all

solution of the API neighborhood in time O(log m). Next, we determine the solution

with the minimal value of the goal function in time O(log n) using n − 1 processors.

The entire method requires

O(max{n − 1,
nm2

log m
,

n3m3

log(nm)
}) = O(

n3m3

log(nm)
) (15)

processors and has time complexity of

O(max{log m, log n, log(n + m)(log(nm))}) = O(log(n + m) log(nm)). (16)

Thus, we can search the API neighborhood in parallel with the same time com-

plexity as determining the value of the goal function for a single solution. Theorem 2

is an example of cost-optimal algorithm for this neighborhood.

4 Insert Neighborhood

Direct search of the INS (Insert) neighborhood implies time complexity of O(n3m).

For this neighborhood and Cmax goal function, an accelerator is known (see [13]),

which allows to search the neighborhood in time O(n2m) for the F∗||Cmax problem.

In this section we will show stronger results for parallel algorithms.

Parallel Neighborhood Search for the Permutation Flow Shop Scheduling Problem 29

Theorem 4 The INS neighborhood for the F∗||Cmax problem can be searched in

time O(n + m) on CREW PRAM using O(n2m
n+m

) processors.

Proof Let v = (a, b), a �= b be a move that generates a solution in the INS neigh-

borhood. The move consists in modifying permutation π by removing job π (a)

from it and inserting it back into π such so the job ends up on position p in the

resulting permutation π(v). Let rs,t , qs,t , s = 1, 2, . . . , m, t = 1, 2, . . . , n − 1, be val-

ues calculated from formulas (7) and (8) for (n−1)-element permutation obtained

from π by removing job π (a). For each position a = 1, 2, . . . , n the values rs,t ,

qs,t can be determined in time O(n + m) on a PRAM with O(nm
n+m

) processors (see

Bożejko [5]). By using O(n2m
n+m

) processors, this process can be completed in time

O(n + m) for all (n−1)-element permutations obtained from π by removal of job

π (a), a = 1, 2, . . . , n. For any given a, the value Cmax(π(v)) obtained by inserting

job π (a) into position b = 1, 2, . . . , n, b �= a can be calculated using the for-

mula (9) in time O(m). We divide the process of determining the goal function for

the neighborhood elements into p =
⌈

n2m
n+m

⌉

groups assigned to a single processor

each. Employing the aforementioned property and the fact that the INS neighbor-

hood contains (n − 1)2 = O(n2) solutions, the time complexity of determining all

values Cmax(π(v)) is
⌈

(n−1)2

p

⌉

O(m) = O(n + m). Next, we need to find the neigh-

borhood element with minimal value of goal function, which can be done in time

O(log(n2)) = O(2 log n) = O(log n) using n processors. The entire method has

time complexity of O(n + m + log n) = O(n + m) and requires the use of O(n2m
n+m

)

processors. �

The proposed method is cost-optimal.

Below we present a different method of searching the INS neighborhood in

the F∗||Cmax problem, which allows to reduce time complexity to O(log(n +

m)(log(nm))) at the cost of more processors.

Theorem 5 The INS neighborhood for F∗||Cmax can be searched in time O(m +

log(n + m)(log(nm))) on CREW PRAM using O(n3m3/ log(nm)) processors.

Proof Let G(π) be a graph defined in Sect. 2 for a solution π that generates the INS

neighborhood. Let rs,t , qs,t , s = 1, 2, . . . , m, t = 1, 2, . . . , n − 1, be values deter-

mined according to formulas (7) and (8) for (n − 1)-element permutation obtained

from π by removing job π (a). Values rs,t , qs,t representing the lengths of longest

paths respectively ending and starting at vertex (s, t) can be determined in time

O(log(n + m)(log(nm))) using O(n3m3/ log(nm)) processors by employing the

method of determining all longest paths between pairs of vertices. From the proper-

ties of the graph G(π) it follows that the longest path ending at vertex (s, t) starts at

(1,1) and longest path starting at (s, t) ends at (n, m). Thus, after calculating the array

of longest paths maxdist , the values rs,t , qs,t for any vertex (s, t), s = 1, 2, . . . , m,

t = 1, 2, . . . , n can be directly accessed from it. Next, we assign to each one of

O(n2) elements of the INS neighborhood a single processor. Thus, the goal function

value:

30 W. Bożejko et al.

Cmax(π(v)) = max
1≤i≤m

(di + qi,b+1), (17)

where

di = max{ri,b, di−1} + piπ(a), i = 1, 2, . . . , m, (18)

for a single neighborhood element corresponding to a move v = (a,b), a �= b can be

determined in time O(m). Using O(n2) processors, we determine the value of the

goal function for all neighborhood elements independently in time O(m). Finally,

we find the minimal of those goal function values in time O(log n2) = O(2 log n) =

O(log n) using O(n2) processors. The entire method thus requires:

O(max{n2, n3m3/ log(nm)}) = O(n3m3/ log(nm))

processors for the time complexity of

O(max{m, log(n + m)(log(nm))}) = O(m + log(n + m)(log (nm))). �

The next theorem shows how the time complexity from Theorem 5 can be reduced

from O(m + log(n + m(log(nm))) to O(log(n + m)(log(nm))), while maintaining

the number of processors at O(n3m3/ log(nm)).

Theorem 6 The INS neighborhood for F∗||Cmax can be searched on CREW PRAM

in time O(log(n + m)(log(nm))) using O(n3m3/ log(nm)) processors.

Proof We proceed similarly to the previous theorem. With the help of formulas (17)

and (18) we determine the value of Cmax(π(v)) in parallel for each from n(n − 1)

neighborhood elements. Earlier, in time O(log(n + m)(log nm)) we determine values

rs,t , qs,t , s = 1, 2, . . . , m, t = 1, 2, . . . , n − 1 which are calculated based on (10) for

a (n − 1)-element permutation obtained from π by removing job π (a). This is done

using O(n3m3 / log(nm)) processors. Next in order to compute each of the n(n − 1)

neighborhood elements we assign O(m2/ log m) processors and transform formula

(18) as follows:

di = max{ri,b, di−1} + pi,π(a) =

= max
1≤k≤i

(rk,b +

i
∑

t=k

pt,π(a)) = max
1≤k≤i

(rk,b + P i
k,π(a)), (19)

where P i
k, j =

i
∑

t=k

pt, j , k = 1, 2, . . . , i are prefix sums that can (Fact 1) be deter-

mined in time O(log m) with O(m/ log m) processors for a given i . Since we need

P i
k, j for all i = 1, 2, . . . , m, thus they can be calculated in parallel during prelim-

inary stage using O(m2/ log m) processors (number used before to check single

neighborhood element). There is at most m sums rk,b + P i
k,π(a),k = 1, 2, . . . , i in

Parallel Neighborhood Search for the Permutation Flow Shop Scheduling Problem 31

formula (19), thus they can be determined in time O(log m) using O(m/ log m)

processors (Fact 3). Therefore, for each i = 1, 2, . . . , m we can obtain value di in

time O(log m) on O(m/ log m) processors. All such values can be determined in

parallel in time O(log m) using O(m2/ log m) processors. Next, in order to calculate

Cmax(π(v)) = max
1≤i≤m

(di + qi,b+1) we perform m parallel additions di + qi,b+1, i =

1, 2, . . . , m and we calculate the maximum from m-element set, using O(m/ log m)

processors and time O(log m) (see Facts 3 and 2). Thus, using n(n − 1)O(m2/ log m)

= O(n2m2/ log m) processors we can determine the value of goal function for all

neighborhood elements in time O(log m). Next, we find element with minimal foal

function value in time O(log n2) = O(2 log n) = O(log n) using n2 processors. The

entire method uses

O(max{n2,
n2m2

log m
,

n3m3

log(nm)
}) = O(

n3m3

log(nm)
)

processors with time complexity

O(max{log m, log n, log(n + m)(log(nm))}) = O(log(n + m) log(nm)).
�

We conclude that the INS neighborhood can be searched in the same time com-

plexity as determining the goal function value for a single neighborhood element.

There also exists a cost-optimal algorithm (Theorem 4).

5 Non-adjacent Pair Interchange Neighborhood

We start with the description of a sequential accelerator for the NPI (Non-adjacent

Pair Interchange) neighborhood which we will use in this section. The accelerator

has time complexity O(n2m) compared to complexity O(n3m) of a direct approach

without the use of the accelerator .

Let v= (a,b), a �= b be a pair of jobs (π (a), π (b)) that we can swap to obtain

permutation π (v). Without the loss in generality we can assume a < b. Let rs,t ,

qs,t , s = 1, 2, . . . , m, t = 1, 2, . . . , n be values calculated from (8) for n-element

permutation π . Let D
x,y
s,t denote the length of the longest path between vertices (s,t)

and (x ,y) in grid graph G(π). Then the calculation of Cmax(π(v)) can be expressed as

follows. First, we determine the length of the longest path ending at (s, a), including

job π (b) due to swap of job v on position a:

ds = max{ds−1, rs,a−1} + ps,π(b), s = 1, 2, . . . , m, (20)

where d0 = 0. Next we calculate the length of the longest path ending at (s, b − 1),

including the fragment of the graph between jobs on positions from a + 1 to b − 1

32 W. Bożejko et al.

inclusive, which is invariant in regards to G(π):

d ′
s = max

1≤w≤s
(dw + D

s,b−1
w,a+1), s = 1, 2, . . . , m. (21)

Next we calculate the length of the longest path ending at vertex (s, b), including

job π (a) swapped on position b:

d ′′
s = max{d ′′

s−1, d ′
s} + ps,π(a), s = 1, 2, . . . , m, (22)

where d ′′
0 = 0. Finally, we obtain:

Cmax(π(v)) = max
1≤s≤m

(d ′′
s + qs,b+1). (23)

Calculation of Cmax(π(v)) is possible provided we have appropriate values D
x,y
s,t .

Those can be calculated recursively for a given t and y = t + 1, t + 2, . . . , n, using

the following formula:

D
x,y+1
s,t = max

s≤k≤x
(D

ky
s,t +

x
∑

i=k

piπ(y+1)), (24)

where Dxt
s,t =

∑x
i=s piπ(t). Alternatively, we can state this formula as:

Ds,t+1
s,t = Ds,t

s,t + ps,π(t+1), Dx,0
s,t = D

0,y
s,t = 0, (25)

D
x,y+1
s,t = max{D

x,y
s,t , D

x−1,y
s,t } + px,π(y+1), (26)

x = 1, 2, . . . , m, y = 1, 2, . . . , n, which allows, for a given (s,t), to determine

all D
x,y
s,t , x = 1, 2, . . . , m, y = 1, 2, . . . , n in time O(nm). Finally, we sequen-

tially determine all O(n2) values Cmax(π(v)) and, before that, calculation of D
x,y
s,t ,

x, s = 1, 2, . . . , m, y, t = 1, 2, . . . , n can be done sequentially in time O(n2m2) (see

[13]).

Theorem 7 The NPI neighborhood for the F∗||Cmax problem can be searched in

time O(nm) on a CREW PRAM using O(n2m) processors.

Proof We will now describe the counterpart to the sequential accelerator. Let us

assign O(m) processors to each of n(n−1)

2
neighborhood elements. For a given (s, t)

value D
x,y
s,t and all x = 1, 2, . . . , m, y = 1, 2, . . . , n can be determined sequen-

tially in time O(nm). By using O(nm) processors we can determine D
x,y
s,t for all

x, s = 1, 2, . . . , m, y, t = 1, 2, . . . , n in time O(nm) and do that only once, dur-

ing preliminary stage, for all neighborhood elements. Let us focus on determining

value Cmax(π(v)) for a given neighborhood element associated with some move v. We

determine value ds in (20) sequentially in time O(m). Calculation of maximum of m

values from (21) can be done in parallel for all s using O(m) processors in time O(m).

Parallel Neighborhood Search for the Permutation Flow Shop Scheduling Problem 33

As for (22), we compute it sequentially for each s in time O(m). The determining

of value Cmax(π(v)) in (23) is equivalent to independently performing m additions

and then computing the maximum of those m values. We can do that sequentially in

time O(m). To sum it up, parallel computation of all O(n2) values Cmax(π(v)) can

be done in time O(m) using O(n2m) processors. However, because the process of

generating D
x,y
s,t had time complexity O(nm), this becomes the complexity of the

entire method. �

The following theorems strengthens the above result, either obtaining better time

complexity or cost-optimality of the method.

Theorem 8 The NPI neighborhood for the F∗||Cmax can be searched in time O(m +

log(n + m)(log(nm))) on CREW PRAM using O(n3m3/ log(nm)).

Proof The proof is similar to previous theorem, except values D
x,y
s,t , are determined

using O(n3m3/ log(nm)) processors in time O(log(n + m)(log nm)) (see [5]). With

D
x,y
s,t we can compute each Cmax(π(v)) in time O(m) using O(m) processors. Thus,

assigning in this stage O(n2m) processors, the time complexity of searching the NPI

neighborhood is:

O(max {m, log(n + m) log(nm)}) = O(m + log(n + m) log(nm)),

using O(max {n2m, n3m3/ log(nm)}) = O(n3m3/ log(nm)). processors. �

Theorem 9 The NPI neighborhood in the F∗||Cmax can be searched in time

O(n + m) on a CREW PRAM using O(n2m2

n+m
) processors.

Proof By employing recursive definition (26) for D
x,y
s,t , we can obtain D

x,y
s,t for

a given pair (s, t) and all x = 1, 2, . . . , m, y = 1, 2, . . . , n in time O(n + m) using

O(nm
n+m

) processors. By using nm times more processors, meaning O(n2m2

n+m
), we can in

parallel compute D
x,y
s,t , x = 1, 2, . . . , m, y = 1, 2, . . . , n for all s = 1, 2, . . . , m, t =

1, 2, . . . , n while keeping the time complexity at O(n + m). Next we employ similar

process as in the previous theorem, except the parallel determining of Cmax(π(v)) for

the neighborhood elements is split on p =
⌈

n2m
n+m

⌉

groups, each consisting of O(m)

processors. Thus the total number of processors is O(pm) = O(n2m2

n+m
). The process of

determining a single Cmax(π(v)) value for a given move v is performed like described

in Theorem 8 in time O(m) using O(m) processors. Thus, the time complexity of

determining all n2 values Cmax(π(v)), when computations are split on p independent

groups (threads) is

n2

p
O(m) = O

n2

⌈

n2m
n+m

⌉m

 = O(n + m) (27)

and such will be the time complexity of the entire method. Because each of p threads

had O(m) processors, then the total number of processors is O(pm) = O(n2m2

n+m
). �

34 W. Bożejko et al.

The method is cost-optimal.

Theorem 10 The NPI neighborhood for F∗||Cmax can be searched on a CREW

PRAM in time O(log(n + m)(log(nm))) using O(n3m3/ log(nm)) processors.

Proof Let values D
x,y
s,t be defined as in (24). The lengths of the longs paths between

(s, t) and (x, y) in G(π) can be determined using O(n3m3 / log(nm)) processors

in time O(log(n + m)(log(nm))) (see [5]). Let us assign O(m2/logm) processors

to each of n2 neighborhood elements. Let us focus on determining Cmax(π(v)) for

a single neighborhood element, obtained by some move v. Calculation of ds in (20)

can be done in parallel in time O(log m) using O(m2/ log m) processors. Prior to

that we transform (20) into:

ds = max{rs,a−1 + psπ(b), rs−1,a−1 + ps−1,π(b) + psπ(b), . . .

. . . , r1,a−1 + p1,π(b) + p2π(b) + · · · + psπ(b)} =

= max
1≤k≤s

(rk,a−1 +

s
∑

t=k

pt,π(b)) = max
1≤k≤s

(rk,a−1 + P s
k,π(b)), (28)

where P s
k, j =

s
∑

t=k

pt, j , k = 1, 2, . . . , s are prefix sums, which (according to Fact 1)

can be calculated for a given s in time O(log m) using O(m/ log m) processors.

Because we need P s
k, j for all s = 1, 2, . . . , m, then we can determine them in parallel

using O(m2/ log m) processors. Afterwards, we will have access to values Ps
k, j for

all s = 1, 2, . . . , m and k = 1, 2, . . . , s assuming a given job j = π (b). The is at

most m sums rk,a−1 + P s
k,π(b) from formula (28), thus they can be determined in time

O(log m) using O(m/ log m) processors (Fact 3). Finally, for each s = 1, 2, . . . , m

the value ds can be determined in time O(log m) using O(m/ log m) processors,

thus all such values are determined in parallel in time O(log m) using O(m2/ log m)

processors. The the determining the maximum of the m values in (21) can be done

in parallel for all s using O(m2/ log m) processors in time O(log m). Prior to that

we compute m sums dw + D
s,b−1
w,a+1 in time O(log m) using O(m/ log m) processors

(Fact 3). We transform (22) into:

d ′′
s = max{d ′′

s−1, d ′
s} + ps,π(a) =

= max
1≤k≤s

(d ′
k +

s
∑

t=k

pt,π(a)) = max
1≤k≤s

(d ′
k + P s

k,π(a)).

Because we can determine all the necessary prefix sums Ps
k,π(a) in time O(log m)

using O(m2/ log m) processors and values d ′
s are all already determined, thus

determining of all values d ′′
s , s = 1, 2, . . . , m can be done in parallel in time

O(log m) using O(m2/ log m) processors, as according to rules shown for com-

Parallel Neighborhood Search for the Permutation Flow Shop Scheduling Problem 35

puting d ′
s . Finally we determine Cmax(π(v)) = max

1≤s≤m
(d ′

s + qs,a+2) in time O(log m)

using O(m/ log m) processors. Such operation consists in performing m additions

d ′
s + qs,a+2, s = 1, 2, . . . , m, which can be done in time O(log m) on O(m/ log m)

processors (Fact 3). Next, for determining Cmax(π(v)) = max
1≤s≤m

(d ′
s + qs,a+2) we com-

pute the maximum from an m-element set, in time O(log m) using O(m/ log m)

processors (Fact 2). Thus, in total using (n2)O(m2/ log m) = O(n2m2/ log m) pro-

cessors we can determine the goal function values for all neighborhood elements

in time O(log m). Next, we need to find the element with the minimal goal func-

tion values, which can be done in time O(log n2) = O(2 log n) = O(log n) using n2

processors. The entire method thus requires:

O(max{n2,
n2m2

log m
,

n3m3

log(nm)
}) = O(

n3m3

log(nm)
) (29)

processors and its time complexity is:

O(max{log m, log n, log(n + m)(log(nm))}) = O(log(n + m)(log(nm))).
�

To sum it up, we can search the NPI neighborhood in parallel in the same asymp-

totic time as determining the goal function value for a single solution. Among

described parallel algorithms there is a cost-optimal one (Theorem 9).

6 Conclusions

In the paper, we presented the results of our research on the parallelization of the most

costly element of the local search algorithms that solves the permutation flow shop

problem with makespan criterion, which is the generation and search of neighbor-

hood. Three popular types of moves were considered: adjacent interchange (swap),

any position swap, and insert type move. For each of those moves we have proposed

effective (cost-optimal) methods as well as methods allowing to choose the best

neighbor in the same time as evaluating a single solution.

Acknowledgements This work was partially funded by the National Science Centre of Poland,

grant OPUS number 2017/25/B/ST7/02181.

References

1. Belabid, J., Aqil, S., Allali, K.: Solving permutation flow shop scheduling problem with

sequence-independent setup time. In: Journal of Applied Mathematics (2020)
2. Bocewicz, G.: Robustness of multimodal transportation networks. Eksploatacja i Nieza-

wodność—Maint. Reliab. 16(2), 259–269 (2014)
3. Bocewicz, G., Wójcik, R., Banaszak, Z.A., Pawlewski, P.: Multimodal processes rescheduling:

cyclic steady states space approach. In: Mathematical Problems in Engineering, 2013, art. no.

407096 (2013)

36 W. Bożejko et al.

4. Bocewicz, G., Nielsen, P., Banaszak, Z., Thibbotuwawa, A.: Routing and scheduling of

unmanned aerial vehicles subject to cyclic production flow constraints. Adv. Intell. Syst. Com-

put. 801, 75–86 (2019)

5. Bożejko, W.: Solving the flow shop problem by parallel programming. J. Parallel Distrib.

Comput. 69(5), 470–481 (2009). https://doi.org/10.1016/j.jpdc.2009.01.009

6. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms. McGraw-

Hill Higher Education (2001)

7. Deb, S., Tian, Z., Fong, S., et al.: Solving permutation flow-shop scheduling problem by

rhinoceros search algorithm. Soft Comput. 22, 6025–6034 (2018)

8. Emmons, H., Vairaktarakis, G.: Flow Shop Scheduling: Theoretical Results, Algorithms, and

Applications. Springer Science & Business Media (2012)

9. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approxi-

mation in deterministic sequencing and scheduling: a survey. In: Proceedings of the Advanced

Research Institute on Discrete Optimization and Systems Applications of the Systems Science

Panel of NATO and of the Discrete Optimization Symposium, pp. 287–326. Elsevier (1979)

10. Jagiełło, S., Rudy, J., Żelazny, D.: Acceleration of Neighborhood Evaluation for a Multi-

objective Vehicle Routing. Artificial Intelligence and Soft Computing. Springer International

Publishing, pp. 202–213 (2015)

11. Komaki, G.M., Sheikh, S., Malakooti, B.: Flow shop scheduling problems with assembly

operations: a review and new trends. Int. J. Prod. Res. 57(10), 2929–2955 (2019). https://doi.

org/10.1080/00207543.2018.1550269

12. Naderi, B., Ruiz, R.: The distributed permutation flow shop scheduling problem. Comput. Oper.

Res. 37(4), 754–768 (2010)

13. Nowicki, E., Smutnicki, C.: A fast tabu search algorithm for the permutation flow-shop problem.

Eur. J. Oper. Res. 91(1), 160–175 (1996). https://doi.org/10.1016/0377-2217(95)00037-2

14. Potts, C., Strusevich, V.: Fifty years of scheduling: a survey of milestones. J. Oper. Res. Soc.

60, S41–S68 (2009)

15. Rudy, J., Żelazny, D.: GACO: A Parallel Evolutionary Approach to Multi-objective Scheduling.

Evolutionary Multi-Criterion Optimization. Springer International Publishing, pp. 307–320

(2015)

16. Wodecki, M., Bożejko, W.: Solving the Flow Shop Problem by Parallel Simulated Annealing.

Parallel Processing and Applied Mathematics. Springer Berlin Heidelberg, pp. 236–244 (2002)

17. Wójcik, R., Pempera, J.: Designing cyclic schedules for streaming repetitive job-shop manu-

facturing systems with blocking and no-wait constraints. IFAC-PapersOnLine 52(10), 73–78

(2019)

18. Xu, J., Yin, Y., Cheng, T.C.E., Wu, Ch-C, Gu, S.: An improved memetic algorithm based on

a dynamic neighbourhood for the permutation flowshop scheduling problem. Int. J. Product.

Res. 52(4), 1188–1199 (2014)

