
Parallel Computing for the

Non-permutation Flow Shop Scheduling

Problem with Time Couplings Using

Floyd-Warshall Algorithm

Wojciech Bożejko , Jarosław Rudy , and Radosław Idzikowski

Abstract In this chapter a variant of the classic Non-permutation Flow Shop
Scheduling Problem is considered. Time couplings for operations are introduced,
determining the minimal and maximal allowed machine idle time between process-
ing of subsequent jobs. The mathematical model of the problem and a graph rep-
resentation of its solution are presented. Next, several properties of the problem,
including a method for computation of the goal function on a CREW PRAM model
of parallel computation, are formulated and proven. Finally, the proposed method is
discussed in terms of its theoretical effects on the time needed to calculate the goal
function and search one of the well-known neighborhoods for use in local search
solving methods.

Keywords Flow Shop · Time couplings · Parallel computing · Discrete
optimization · Scheduling

1 Introduction

The Flow Shop Scheduling Problem (FSSP), and its more specific permutation vari-
ant [21], is one of the most well-known scheduling problems in the field of discrete
optimization and operations research. It has many practical applications, being able

W. Bożejko · R. Idzikowski (B)
Department of Control Systems and Mechatronics, Faculty of Electronics, Wrocław University
of Science and Technology, 27 Wybrzeże Wyspiańskiego St., 50-372 Wrocław, Poland
e-mail: radoslaw.idzikowski@pwr.edu.pl

W. Bożejko
e-mail: wojciech.bozejko@pwr.edu.pl

J. Rudy
Department of Computer Engineering, Faculty of Electronics, Wrocław University of Science
and Technology, 27 Wybrzeże Wyspiańskiego St., 50-372 Wrocław, Poland
e-mail: jaroslaw.rudy@pwr.edu.pl

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. Bocewicz et al. (eds.), Performance Evaluation Models for Distributed

Service Networks, Studies in Systems, Decision and Control 343,
https://doi.org/10.1007/978-3-030-67063-4_1

1

2 W. Bożejko et al.

to model various real-life production processes, starting from classic assembly line
manufacturing [27] to construction projects management [6].

Due to its popularity, practical applications and difficulty (FSSP is considered
NP-hard optimization problem), the FSSP and many of its variants (e.g. cyclic [8],
multi-objective [18, 25], stochastic [11]), had been a topic of very active research
by various groups of scientists. Moreover, various modeling and solving methods
have been considered for this problem, ranging from integer programming [28] and
metaheuristic method [26] to parallel computation [5] and fuzzy sets theory [22].

However, sometimes existing variants of the FSSP are sometimes not sufficient
to model real-life situations and unusual constraints, such as machines with specific
working conditions or machine/vehicle operating/renting cost. One example of this is
the concreting process. In this case one of the operations consists of pouring concrete
on a designated location. The concrete mixer truck needs to load and mix the next
portion of the mixture before the task can proceed to the next location. Moreover, the
concrete needs to be mixed for a certain amount of time. Too short or too long mixing
can result in incorrect concrete parameters or even damage the concrete mixer. Mixing
process is thus and additional task with minimal and maximal duration taking place
between other tasks. Such a restriction can be generally described as time coupling:
an additional relation between the completion time of an operation on a machine
and the starting time of the next operation on the same machine. In result, the final
schedule will contain gaps required for those additional tasks (like concrete mixing)
with their allowed duration given by a closed from-to interval.

The minimal idle time for a machine can be modeled as setup times [23], how-
ever this does not model the maximal idle time. Other types of time couplings often
encountered in the literature are the no-idle constraint [19] (machine has to start pro-
cessing the next job immediately after completion of the previous one) and no-wait
[12] (next operation of a job has to be processed immediately after completion of
the previous one). Other constraints considered for similar scheduling problems that
resemble time couplings or its specific cases include limited-wait [10, 24] (maximal
inter-operation time in a job) and inserted-idle [14] (deliberate various-sized inter-
machine idle periods). Naturally, it is also possible to use more than one such restric-
tion together, for example combining no-wait and limited-idle constraints together
[13]. Approaches exist that consider machine-fixed time couplings. And example
of that is paper by Bożejko et al., where Branch-and-bound and Tabu search solv-
ing methods were proposed for the Permutation Flow Shop Problem [7]. Further
results from the area of complex scheduling problems can be found in the works of
Bach et al. [1], Bocewicz [2], and Bocewicz et al. [3, 4] as well as Pempera and
Smutnicki [20].

In recent years the there have been a considerable development in parallel com-
puting . Example include such technologies as NVidia CUDA (GPU devices with up
to several thousand parallel cores), Xeon Phi vector processor (up to several dozens
parallel processors) or massively parallel distributed systems, grids and cluster. Thus,
parallel computation has become a common way to improve running time and effec-
tiveness of many discrete optimization algorithms, including solving methods for
Flow Shop and similar scheduling problems.

Parallel Computing for the Non-permutation Flow Shop … 3

For example, Luo and Baz [15] have employed a two level parallel Genetic Algo-
rithm using a hybrid GPU-CPU system to solve large instances of Flexible Flow
Shop Scheduling Problem. Results indicated that the approach remains competitive
at reduced computation time. Similarly, Luo et al. [16] proposed genetic algorithm
for solving an dynamic version of the Flexible Flow Shop Problem with emphasis on
energy efficiency. The method, designed for consistency with NVidia CUDA greatly
reduces computation time while providing competitive results. Steinhöfel et al. [26]
proposed a parallel Simulated Annealing algorithm for the Job Shop Scheduling
Problem with makespan criterion. The authors employed a method for computing
the goal function by finding the longest path using n3 parallel processors. Moreover,
the authors showed that bound on the value of the goal function can be used to
further reduce computation time, by bounding the number of edges on the longest
path in the graph. Finally, Flow Shop Scheduling was also used as a benchmark for
testing general parallel computation methods. For example, Melab et al. have used
this problem to test the effectiveness of their Branch-n-Bound method [17]. Two
energy-consuming equivalent parallel systems were used: a MIC architecture with
Intel Xeon Phi 5110P coprocessor and GPU system with NVidia Tesla K40. Results
of experiments indicated that GPU approach outperforms the MIC coprocessor.

In this paper we aim to model Non-permutation Flow Shop Scheduling Problem
with minimal-maximal time coupling and makespan criterion. We will formulate
several problem properties aiding us in efficient calculation of the goal function.
Finally, we will propose a method of parallel computation of the goal function using
a modification of the Floyd-Warshall algorithm.

The remainder of the paper is structured as follows. In Sects. 2 and 3 we formalize
the problem, presenting its mathematical model and solution graph. In Sect. 4 we
formulate several problem properties with regards to solution feasibility, solution
graph and two methods of the goal function computation: sequential and parallel.
In Sect. 5 we discuss the possible application and speedup of the parallel method.
Finally, Sect. 6 contains the conclusions.

2 Problem Formulation

In this section we will formulate the mathematical model of the FSSP-TC problem,
including notation, problem constraints and the goal function. All values are positive
integers unless otherwise specified.

The problem can be described as follows. Let J = {1, 2, . . . , n} and M =

{1, 2, . . . , m} be sets of n jobs and m machines respectively. For each job j by
O j we denote the set of m operations of that job:

O j = {l j + 1, l j + 2, . . . , l j + m}, (1)

where l j = m(j − 1) is the total number of operations in all jobs prior to j . Thus,
there are nm operations in total with O = {1, 2, . . . , nm} being the set of all opera-
tions. Sets O j are thus a partition of O .

4 W. Bożejko et al.

Table 1 Example instance for the FSSP-TC with n = 4 and m = 3

i pi,1 pi,2 pi,3 pi,4 r̂i d̂i

1 2 2 5 2 3 4

2 1 2 4 2 1 2

3 1 8 3 2 2 3

Each operation of job j has to be processed on a different, specific machine. The
order of visiting machines for each job is the same and given as:

1 → 2 → 3 → . . . → m − 1 → m. (2)

Thus, operations from the set O j are processed in the order given by sequence:

(l j + 1, l j + 2, . . . , l j + m). (3)

Job j on machine i (i.e. operation l j + i) has to be processed for time pi, j without
interruption. Several additional constraint exist. First, machine can process at most
one operation and at most one operation of a job can be processed at any given
time (operations do not overlap). Second, time at which an operation is processed
is tied to the time at which previous operation on that machine is processed. This
constraint is called a time coupling. In this specific case, let r̂i ≥ 0 and d̂i ≥ r̂i denote
the minimal and maximal time machine i has to wait before processing the next
operation. This means the wait time before processing next operation is in interval
[r̂i , d̂i]. In particular if d̂i = 0 this constraint is reduced to classic no-idle constraint
known from the literature. Values of pi, j , r̂i and d̂i for an exemplary FSSP-TC
instance with n = 4, m = 3 are shown in Table 1.

The task is to determine the order of processing jobs for each machine. Let πi be
an n-element sequence (permutation) describing the order of processing of jobs on
machine i , such that πi (j) is the job that will be processed as j-th on i . Then the
order of processing of jobs is given by an m-element tuple π = (π1, π1, . . . , πm).
Also, let Ii (j) denote on what position j appears in πi :

πi (j) = k ⇐⇒ Ii (k) = j. (4)

In other words, job j is processed on machine i as Ii (j)-th job.
The processing order π is used to determine the processing schedule for all oper-

ation, which is given by a matrix of operation starting times S of size m × n:

S = [Si, j]
m×n, (5)

where element Si, j is the starting time of j-th operation to be processed on machine
i according to the processing order π . Similarly, we can define matrix C of operation
completion times:

Parallel Computing for the Non-permutation Flow Shop … 5

C = [Ci, j]
m×n, (6)

where Ci, j is the completion time of j-th operation to be processed on i in π .
The schedule given by S is feasible if it satisfied the following conditions:

Si, j ≥ Ci, j−1 + r̂i , (7)

Si, j ≤ Ci, j−1 + d̂i , (8)

Si, j ≥ Ci−1,Ii−1(πi (j)), (9)

Ci, j = Si, j + ρi, j , (10)

with starting conditions Si,0 = S0, j = 0 and ρi, j being a shorthand notation for
pi,πi (j). Inequalities (7)–(8) ensure that operations on a given machine do not over-
lap, are processed in the order given by πi and obey the time coupling constraints.
Inequality (9) guarantees that operations in a job do not overlap and are processed in
the order specified by formulas (2)–(3). Finally, Eq. (10) ensures that each operation
is processed by the required time without interruption. The precise method of deter-
mining schedule S from processing order π and the feasibility of schedules will be
discussed further in the paper.

For the instance shown in Table 1 and example processing order:

π =
(

(1, 2, 3, 4), (2, 1, 3, 4), (2, 3, 4, 1)

)

, (11)

the possible schedule S is as follows:

S =

0 5 10 18
8 12 15 20

10 20 25 29

 . (12)

The resulting schedule is shown as a Gantt chart in Fig. 1.
Let Cmax(π) denote, for a given processing order π , the maximum of completion

times of all operations (the makespan):

Fig. 1 Gantt chart for the exemplary schedule and problem instance

6 W. Bożejko et al.

Cmax(π) = max
j∈J ,i∈M

Ci, j . (13)

Due to constraints (7)–(10), it can be shown that this formula simplifies to:

Cmax(π) = Cm,n. (14)

To solve the FSSP-TC problem, one needs to find the processing order π∗ which
minimizes the makespan Cmax(π):

Cmax(π
∗) = min

π∈Π
Cmax(π), (15)

where Π is the set of all feasible processing orders and π∗ is called the optimal
processing order. The makespan for the exemplary instance from Table 1, processing
order (11) and schedule (12) is equal to 30.

The FSSP-TC problem with the makespan criterion defined in this section will be
denoted as F |r̂i , d̂i |Cmax in the Graham notation for theoretical scheduling problems.

3 Graph Representation

In this section we will introduce and discuss the graph model used to represent
solutions and constraints for the FSSP-TC problem. The graph structure is based on
a similar graph model for the classic Flow Shop Scheduling Problem and will be
used to prove several problem properties later in the paper.

Let us consider an arbitrary processing order π , for which we will now construct
a weighted directed graph G(π) = (V, E), with V being the set of nm vertices and
E being the set of 3nm − 2m − n directed edges (arcs). The general exemplary
structure of this solution graph for some instance is shown in Fig. 2.

Let us start with the vertices, which can be thought of as if placed on a 2-
dimensional grid. In result the vertices can be denoted using a pair of coordinates
(i, j). Thus, vertex (i, j) is placed in the j-th “column” and i-th “row” of G(π) and
it represents the j-th job to be processed on machine i . It means that jobs in i-th
row are ordered according to πi . All vertices are weighted with the weight of vertex
(i, j) being equal to ρi, j .

The arcs of the graph G(π) represent the problem constraints and can be divided
into three disjoint subsets:

• horizontal “forward” arcs from vertices (i, j) to (i, j + 1) with weight r̂i for i =

1, 2, . . . , m and j = 1, 2, . . . , n − 1. There are (n − 1)m such arcs.
• horizontal “reverse” arcs from vertices (i, j + 1) to (i, j) with weight D̂i, j :

D̂i, j = −ρi, j − ρi, j+1 − d̂i . (16)

Parallel Computing for the Non-permutation Flow Shop … 7

Fig. 2 Exemplary structure of the graph G(π)

for i = 1, 2, . . . , m and j = 1, 2, . . . , n − 1. There are (n − 1)m such arcs.
• weightless arcs from vertices (i, Ii (j)) to (i + 1, Ii+1(j)) for i = 1, 2, . . . , m − 1

and j = 1, 2, . . . , n. There are n(m − 1) such arcs.

As with graph for similar scheduling problems, the length of the longest path
(defined as the sum of arc and vertex weights along the path, including the starting
and ending vertex) ending at vertex (i, j) is equal to Ci, j . If we do not include the
weight of the final vertex (i, j), then we get Si, j instead. Moreover, the length of the
longest (critical) path in G(π) is equal to value Cmax(π).

Weights ρi, j represent operation times. From constraints (9)–(10) we have:

Ci+1, j − Ci, j ≥ ρi, j+1. (17)

Due to that the “vertical” arcs have weight 0 (since value ρi, j+1 is added once we have
entered vertex (i, j + 1)) and are thus effectively weightless. Next, from constraints
(7) and (10) it follows that:

Ci, j+1 − Ci, j ≥ r̂i + ρi, j+1, (18)

and thus forward arcs have weight r̂i . The most interesting is constraint (8). Due to
this constraint it follows that:

Ci, j − Ci, j+1 ≤ − ρi, j+1 − d̂i . (19)

Thus, it seems the weight of the “reverse” arc should be equal to −ρi, j+1 − d̂i .
However, the arc will end at vertex (i, j) and its weight ρi, j will be automatically
included in the length of the path and yield incorrect value. In order to mitigate it,

8 W. Bożejko et al.

we include additional term −ρi, j and the final arc weight is:

− ρi, j − ρi, j+1 − d̂i , (20)

which matches the value D̂i, j described before.
Let us notice that change of the processing order π can affect the order (permu-

tation) of vertices in every row. This will affect the weights of vertices and which
vertices weightless arcs connect to. It will also change weights D̂i, j of reverse arcs.
Forward arcs and their values are independent of π . Finally, let us notice that graph
G(π) contains cycles. Cycles with positive length (understood as the sum of weights
of vertices and arcs belonging to the cycle) are not allowed as the resulting graph
would not have a longest path at all. We will look into this issue in the next section.

4 Problem Properties

In this section we will formulate and proof several properties and theorems for the
FSSP-TC problem, including cycles in graph G(π), feasibility of schedules and
methods of sequential and parallel computation of the goal function.

We will start with the issue of existence of the longest path in graph G(π). Unlike
in the classic Flow Shop Scheduling Problem, where there are no cycles in the solution
graph, there are clearly cycles in graph G(π) for the FSSP-TC problem. Such cycles
are allowed as long as there are no cycles with positive length. It is indeed true as
stated by the following property.

Property 1.1 Let π be a processing order for problem F |r̂i , d̂i |Cmax. Then the solu-

tion graph G(π) for that problem does not contain a cycle with positive length.

Proof G(π) does not contain arcs going upward, thus a cycle is always restricted
to a single row. Cycles must contain at least two vertices. Let us consider two cases:
(1) cycles with two vertices, and (2) cycles with three or more vertices.

A cycle with two vertices contains vertices (i, j) and (i, j + 1) (for j < n) as
well as two arcs between those vertices. The weights in that cycle are ρi, j , ρi, j+1, r̂i

and D̂i, j . It is easy to see that the length of such cycle is equal r̂ j − d̂i ≤ 0.
Let us now consider cycles with k > 2 subsequent vertices from (i, j) to (i, j +

k − 1). This cycle also contains k − 1 forward arcs of weight r̂ j and k − 1 reverse
arcs. Let us now calculate the length of sych cycle.

Without the loss of generality we will start the cycle from vertex (i, j + k − 1). Let
us consider “inner” vertices of the cycle i.e. vertices (i, j + 1) through (i, j + k − 2).
Let (i, c) denote such inner vertex. When walking the cycle we visit this vertex twice,
adding the weight 2ρi,c to the cycle. However, we also add weight −ρi,c twice: once
from the arc leading to (i, c) and once from the arc leaving (i, c). Thus, those values
negate each other. In result, it is equivalent to a situation where inner vertices have
weight 0 and the reverse arcs have only the d̂i term, except for the arc going from

Parallel Computing for the Non-permutation Flow Shop … 9

(i, j + k − 1) and the arc going into (i, j). Those two arcs retain the terms −ρi, j+k−1

and −ρi, j , respectively. However, those two weights will be negated by the weights
of the “border” vertices (i, j) and (i, j + k − 1) (we visit those vertices only once).

To summarize this, we can compute the length of the cycle as if all vertices
belonging to the cycle had weight 0 and the reverse arcs had only term d̂i . The length
of such a cycle is thus:

(k − 1)(r̂i − d̂i) ≤ 0. (21)
�

Therefore, we know all cycles have non-positive length and thus the longest path
indeed exists in G(π). However, remaining cycles are still a potential issue when
computing the goal function. Fortunately, we can disregard all remaining cycles for
the purpose of the calculation of the goal function due to the following property.

Property 1.2 Let π be a processing order for problem F |r̂i , d̂i |Cmax and len(c) be

the length of path c (sum of vertex and arc weights on that path) in graph G(π). Then

if there exists path p in G(π) with length len(p) such that p contains a cycle, then

there exists path P in G(π) that does not contain a cycle with length len(P) ≥ len(p).

Proof Let us first consider that p has a single cycle. Such a path can be decomposed
into three paths: p1 (before the cycle), pc (the cycle) and p2 (after the cycle), where
p1 or p2 can be empty. Then we can build P from joining paths p1 and p2, ignoring
the cycle. From the Property 1.1 we have len(pc) ≤ 0 and thus len(P) ≥ len(p).

The single-cycle case can be easily generalized for paths with multiple cycles by
applying that logic multiple times, removing a single cycle with each step. �

Thus, if a path ending at vertex (m, n) contains a cycle, then either it is not a critical
path (if at least one of its cycles has negative length) or we can find another path with
the same length, but with all cycles removed.

Next, we will present an algorithm for computing the value of the makespan
sequentially (using a single processor) and prove its computational complexity.

Theorem 1.1 Let π be a processing order for the F |r̂i , d̂i |Cmax problem. The sched-

ule S and makespan C(max)(π) for π can be determined in time O(nm).

Proof The algorithm is divided into m phases, one for each machine. After phase i

the starting and completion times for all machines up to i are determined, meaning
determining values Sl, j and Cl, j for j = 1, 2, . . . , n and l = 1, 2, . . . , i . Also, every
time a given value Si, j is updated, the corresponding value Ci, j is updated as according
to constraint (10) (that constraint is thus always satisfied).

The first phase is started by setting S1,1 = 0. Next, we iterate over remaining jobs
in the order specified by π1 and setting:

S1, j = C1, j−1 + r̂1, j = 2, 3, . . . , n. (22)

10 W. Bożejko et al.

After this constraint (7) for machine 1 is satisfied. Since it is the first machine and
d̂1 ≥ r̂1, then all other constraints are also met and the phase is complete. It is easy
to see this phase is done in time O(n).

Every subsequent phase i > 1 is divided into two subphases. We start the first
subphase by setting Si,1 = Ci−1,1. Next, we iterate over the remaining jobs (according
to the order specified in πi) and setting:

Si, j = max{Ci, j−1 + r̂i , Ci−1, j }, j = 2, 3, . . . , n. (23)

After this, the first subphase is complete in time O(n).
It is easy to see that after this is done, all constraint for machine i are satisfied,

except for constraint (8). If two jobs on machine i are separated by more than d̂i then
we have to move them closer to each other. However, we cannot move the later job
to be scheduled earlier, as doing so would violate one or both of the constraints (7)
and (9). Instead, we will move the earlier job to be processed later, so the separation
between them will be exactly d̂i . This is always possible as moving a job to be
processed later does not violate any constraints (d̂i ≥ r̂i).

The second subphase is thus aimed at correcting any possible violation of con-
straint (8). However, moving a job to be processed later widens the gap separating it
from the previous job and make it violate its own constraint (8) (if it was not already
violated). This would make it possible to shift the same job up to n − 1 times in the
worst-case. Fortunately, this can be fixed by iterating over the jobs in the reverse
order compared to the first subphase. We thus set:

Ci, j−1 = max{Si, j − d̂i , Ci, j−1}, j = n, n − 1, . . . , 2. (24)

After this the second subphase is finished in time O(n) with all constraints met.
In total, after m phases are complete, all values Si, j and Si, j (including value Cmax

are determined. The algorithm completes in time O(nm).

The above theorem also leads to the following immediate conclusions.

Corollary 1.1 For any processing order π for the F |r̂i , d̂i |Cmax problem there exists

at least one feasible schedule S (and thus all processing orders are feasible).

Proof The algorithm from Theorem 1.1 is applicable for any processing order π as
the only thing that changes with the change of π are the actual values ρi, j (as we
remember, ρi, j is a shorthand for pi,πi (j)) that are used to update Ci, j based on the
current value of Si, j . The algorithm thus produces a feasible schedule S for any π .

Corollary 1.2 Le π be a processing order for the F |r̂i , d̂i |Cmax problem. The sched-

ule S obtained for π through the algorithm from Theorem 1.1 is left-shifted.

Proof This follows because operation starting times are always set to the earliest
time that does not violate one or more problem properties. Thus, it is impossible to
schedule any operation to be started earlier without changing the processing order π

and S is thus left-shifted. �

Parallel Computing for the Non-permutation Flow Shop … 11

For our last result in this section, we will propose a parallel algorithm for com-
puting the goal function for the FSSP-TC problem which can be applied for the Con-
current Read, Exclusive Write Parallel Random Access Machine (CREW PRAM)
model of parallel computation. We start by reminding the commonly known fact
about the time complexity of computing the minimum of a sequence.

Fact 1.1 The minimum value of an n-element sequence can be determined on

a CREW PRAM machine in time O(log n) using O(n/ log n) processors.

Proof In phase one, we divide the sequence into O(n/ log n) blocks (subsequences)
of length O(log n). Each processor computes the minimum of each block in a sequen-
tial manner in time O(log n). Thus, we obtain O(n/ log n) values. In the second
phase, we have to compute the minimum of them. Since we have O(n/ log n) pro-
cessors, this can be done in time O(log n). Thus, both phases in total take time
O(log n) using O(n/ log n) processors.

With this and the graph G(π) we can formulate the following theorem for time
complexity of a parallel algorithm for determining of Cmax for the FSSP-TC problem.

Theorem 1.2 For a fixed processing order π = (π1, π2, . . . , πm) the value of

Cmax(π) for the F |r̂i , d̂i |Cmax problem can be determined in time O(log2(nm)) using

a CREW PRAM computation model with O
(

(nm)3

log(nm)

)

processors.

Proof In order to compute Cmax(π) we will compute the length of the longest path
in the graph G(π). The proposed parallel method of computing the longest path is
based on the sequential Floyd-Warshall algorithm for finding the shortest paths in
graphs [9]. The algorithm allows for negative edge weights and cycles as long as
there is no negative cycle (i.e. a cycle with negative sum of its edge weights).

Finding the longest path in G(π) = (V, E) is equivalent to finding the shortest
path in graph G ′(π) = (V, E ′). Graph G ′(π) is exactly like G(π), except its edge
weights are negated:

∀(i, j) ∈ E : (i, j) ∈ E ′ ∧ ψ ′(i, j) = −ψ(i, j), (25)

where ψ(u, v) and ψ ′(u, v) are the weights of edge (u, v) in graphs G(π) and G ′(π)

respectively. From Property 1.1 we know that the graph G(π) for the F |r̂i , d̂i |Cmax

problem has no positive cycles, meaning that G ′(π) has no negative cycles. Thus,
the Floyd-Warshall algorithm is viable in this case.

To make the notation more clear, we will transform the graph G ′(π) into G∗(π)

by changing the vertex numbering. In result, vertices of G∗(π) will be indexed using
single number u instead of a pair (i, j) as for G ′(π). The numbering translation from
(i, j) to u is as follows:

u = (i − 1)n + j. (26)

Thus, vertices are numbered starting from the top left, numbering all vertices in a row
before proceeding to the next row. The reverse translation is as follows:

12 W. Bożejko et al.

i =

⌊

u − 1

n

⌋

+ 1, j = u −

⌊

u − 1

n

⌋

n. (27)

In result we obtain graph G∗(π) = (W, E∗), with W = {1, 2, . . . , nm} being the
set of nm vertices. The weight of vertex u ∈ W is denoted ρu and is equal to weight
of the corresponding vertex from G ′(π), i.e. ρu = −ρi, j . The set of edges E∗ can
be partitioned into sets E0, Er and Ed representing vertical (technological), forward
horizontal and reverse horizontal edges from graph G ′(π) respectively:

E0 =

nm−n
⋃

u=1

{(u, u + n)}, (28)

Er =

m
⋃

k=1

kn−1
⋃

u=(k−1)n

{(u, u + 1)}, (29)

Ed =

m
⋃

k=1

kn−1
⋃

u=(k−1)n

{(u + 1, u)}. (30)

Weight ψ(u, v) of edge (u, v) in graph G∗(π) is given as follows:

ψ(u, v) =

0 if (u, v) ∈ E0,

−r̂i if (u, v) ∈ Er ,

−D̂i, j if (u, v) ∈ Ed .

(31)

where i and j can be translated from u using formula (27). The example of a simple
graph G(π) and corresponding graph G∗(π) are shown on Fig. 3a, b.

With graph G∗(π) defined, we will now introduce matrix A = [au,v] of size nm ×

nm, where au,v will represent the length of longest path between vertices u and v in
graph G∗(π). Values of A should be initialized as follows:

au,v =

0 if u = v,

ψ(u, v) − ρu if u �= v ∧ (u, v) ∈ E∗,

∞ if u �= v ∧ (u, v) /∈ E∗.

(32)

The reason for including value ρu is that the Floyd-Warshall algorithm recognized
weighted edges, but not weighted vertices. Thus, the weight ρu is added to every edge
that starts at vertex u. The initial contents of matrix A for the graph from Fig. 3b is
shown in Fig. 3c.

Matrix A will be used to compute the shortest path in G∗(π) which, after negating
it, will be the longest path in the original graph G(π). Each of the (nm)2 initial values
of A is calculated independently from the others. Thus, initialization of A can be done
in time O(1) on a CREW PRAM computation model using O((nm)2) processors,
each performing a single assignment.

Parallel Computing for the Non-permutation Flow Shop … 13

Fig. 3 Transformation of the original solution graph G(π) into derived graph G∗(π) and initial
values of matrix A for some instance with n = 3 and m = 2

Furthermore, we define a 3-dimension array T = [tu,w,v] of size nm × nm × nm,
which will be used to compute the transitive closure of the path lengths in G∗(π). In
other words, value tu,w,v will be used to store and update the length of the shortest
path from vertex u to vertex v that goes through vertex w.

The core part of the algorithm is based on repeating the following steps in a loop:

1. Update tu,w,v for all triples (u, w, v) as per the following formula:

tu,w,v = au,w + aw,v, (33)

2. Update au,v for all pairs (u, v) based on the following formula:

au,v = min{au,v, min
1≤w≤nm

tu,w,v}. (34)

Our task is to determine the value a1,nm (length of path from vertex 1 to vertex
nm). In order to do this, it is sufficient to run the above two steps ⌈log(nm − 1)⌉

times. This is because in each step the algorithm finds out the shortest path between
vertices placed further from each other. After the first iteration the algorithm will
compute the shortest paths that consist of a single edge. After the second iteration,
the algorithm will compute the shortest paths composed of up to two edges. After
the third iteration it will compute shortest paths that are composed of up to 4 edges

14 W. Bożejko et al.

and so on. Therefore, after the k-th iteration of the loop the algorithm will compute
the shortest paths that are composed of up to 2k edges.

The longest possible path (in the sense of the number of edges it is composed
of) in graph G∗(π) will go from left to right through the entire first machine, then
go back from right to left through the entire second machine, then from left to right
on the third machine and so on. This path will thus move in a zigzag pattern, going
through all vertices. Such a path will have no more than nm − 1 edges. Thus, the
algorithm will compute the longest path after ⌈log(nm − 1)⌉ iterations.

Next, we will discuss how the two steps indicated by formulas (33) and (34)
can be done in parallel. The first step could be executed in time O(1) on CREW
PRAM if we assigned O((nm)3) processors to it, each doing a single assignment for
a single triple (u, w, v). However, since we have only ⌈(nm)3/ log(nm)⌉ processors,
each processor will have to process not a single (u, w, v) triple, but ⌈log(nm)⌉ such
triples. The time complexity of this step will thus be O(log(nm)).

The goal of step 2 is to calculate the minimum of nm + 1 values, which can
be done (according to Fact 1.1) on a CREW PRAM in time O(log(nm)) using
O(nm/ log(nm)) processors. Such minimum has to be computed for (nm)2 dif-
ferent (u, v) pairs and computation for each pair is independent from the others.
Thus this step can be done in time O(log(nm)) using (nm)2 O(nm/ log(nm)) =

O((nm)3/ log(nm)) processors in total.
As already mentioned, the steps 1 and 2 of updating matrices A and T have to be

repeated ⌈log(nm − 1)⌉ times in a loop, thus the total time complexity of this loop
is:

⌈log(nm − 1)⌉O(log(nm)) = O(log2(nm)), (35)

using (nm)2 O(nm/ log(nm)) = O((nm)3/ log(nm)) processors.
Finally, let us notice that weight ρu of vertex u is only used in formula (32), if u

has outgoing edges. This is true for all vertices except for nm, which has no outgoing
edges. Thus, value ρnm is not taken into account by the algorithm and the value a1,nm

is not true value of Cmax. However, we know that vertex nm is always included in
the critical path and since it has no outgoing edges then it is visited only once and
as the last edge. Thus, we can compute the final value of Cmax(π) in time O(1) as
follows:

Cmax(π) = −a1,nm + ρnm . (36)

Thus, the final time complexity of the entire algorithm (including initialization of

A, the loop and the final corrections) is O(log2(nm)) using O((nm)3

log(nm)
) processors.

�

To summarize the results presented in this section, we have shown that the presence
of cycles in solution graph G(π) is not a problem, showed a sequential and parallel
algorithms for computing Cmax(π) in time O(nm) and O(log2(nm)) respectively
and that schedules obtained are feasible and left-shifted.

Parallel Computing for the Non-permutation Flow Shop … 15

5 Discussion

In this section we will discuss the possible results of applying the proposed parallel
computation method in solving algorithms for the F |r̂i , d̂i |Cmax problem.

The first point of interest is the speedup S we can achieve by computing the single
value of Cmax in parallel. This speedup is defines as:

S =
Ts

Tp

, (37)

where Ts is the time required to compute Cmax with a traditional (i.e. sequential)
method using a single processor and Tp is the time required to compute Cmax with the

proposed parallel method using (nm)3

log(nm)
processors. The theoretical speedup values for

several problem sizes commonly considered in the literature are shown in Table 2. We
see that the proposed parallel computation method can provide considerable speedup
(up to 10 for the considered problem sizes).

The computation of a single Cmax value at a time is a part of nearly every solving
algorithm for the F |r̂i , d̂i |Cmax problem. However, there is a group of methods,
called local search methods, that is based on searching the entire neighborhood of
a given solution to find the best solution. For the F |r̂i , d̂i |Cmax problem one of such
neighborhood is the so-called Adjacent Pair Interchange (API) neighborhood. On
each machine there are n − 1 possible adjacent job pairs and there are m machines,
thus the API neighborhood contains (n − 1)m solutions. Thus, it is possible to further
shorten the computation by computing every solution from the neighborhood in
parallel. We can define speedup S′ for this similar to the previous one as follows:

S′ =
T ′

s

T ′
p

, (38)

Table 2 Theoretical speedups for the proposed parallel method compared to sequential approach

n × m Ts Tp S T ′
s T ′

p S(p)′

10 × 5 50 36 1.39 2250 40 56.25

20 × 10 200 64 3.13 38000 69 550.72

30 × 15 450 81 5.56 195750 86 2276.16

40 × 20 800 100 8.00 624000 106 5886.79

50 × 20 1000 100 10.00 980000 106 9245.28

Table key:
n × m – problem size,
Ts – time of computing Cmax of a single solution using sequential algorithm,
Tp – time of computing Cmax of a single solution using parallel algorithm,
S – single solution speedup (Ts/Tp),
T ′

s – time of API neighborhood search using sequential algorithm,
T ′

p – time of API neighborhood search using parallel algorithm,
S′ – neighborhood search speedup (T ′

s /T ′
p)

16 W. Bożejko et al.

where T ′
s is time of searching all (n − 1)m solutions one after another using a single

processor and T ′
p is the time of searching the neighborhood fully in parallel using

(nm)3

log(nm)
processors for each neighborhood solution. The values of S′ are also shown

in Table 2 as well. We see that the theoretical obtainable speedup is very high (up to
several thousands for common problem sizes). This is mostly due to the neighborhood
size, but is further enhanced by the proposed parallel method.

While offering considerable to very high speedup, the proposed method requires
a very high number of processors. Even for the 10 × 5 the method requires 25 000
parallel processors to compute the value of Cmax and this number only increases with
the growth of the problem size. Thus, the proposed method is not yet viable to be
employed for real-life scheduling problems at the current state of parallel computing
technologies, which is why we focus on the theoretical approach in this paper.

However, while the proposed method remains mostly theoretical at the moment
it is still possible to apply it using massively parallel distributed systems. Similarly,
experimental research of the proposed method can be carried out using such systems.
Example of such parallel computation environments:

• GPU devices using Nvidia CUDA technology. For example Tesla K40c and RTX
2080Ti offer 2880 and 4352 CUDA parallel cores respectively. It should be noted
that it is possible to install several GPU devices on a single machine. This, should
allow to up to 20 000 parallel cores. However, GPU cores are usually much slower
than CPU cores.

• Multicore and Manycore CPUs. While many CPU are limited to around 20 cores,
there exist devices like Xeon Phi x200 coprocessor (64 cores) and ADM Ryzen
Threadripper 3990X processor (128 logical cores).

• Computer and supercomputer clusters. Such environments consist of hundreds
of multicore computer nodes. For example, Wrocław Center for Networking and
Supercomputing (referred to as WCSS) provides access to over 22 000 cores
through over 900 24/28-core computing nodes with total computation power of
860 TFLOPS with 76 TB of RAM (from 64 to 512 GB) per node. Fast inter-node
connection through InfiniBand.

It is also important to consider the software required. Most of the mentioned parallel
environments can be access with C/C++ programming language, with the help of
the CUDA, OpenMp/MPI libraries, depending on the parallel method used. Some of
the environments are also supported by newer programming languages like python,
but this is not guaranteed for all environments. Aside from that, cluster and super-
computer centers often need to accessed using specific interfaces, in which case the
software required is heavily also dependent on the particular cluster used.

To summarize, it is possible to apply the proposed method, though care must
be taken concerning inter-node communication, which could become a bottleneck.
Moreover, due to Brant’s law it is also possible to apply the method in system with
lower number of cores, but the method will run slower, as described by that law.

It should be also noted that the proposed method has several limitations. The ones
already mentioned that stems from real-life applications are the hardware necessary to

Parallel Computing for the Non-permutation Flow Shop … 17

run the method and inter-node bottlenecks. Moreover, the method has low efficiency
(measured as speedup divided by the number of processors employed). For example,
for n = 20 and m = 10 the efficiency is only 0.0006.

6 Conclusions

In this paper we have considered a variant of the well-known Non-permutation Flow
Shop Scheduling Problem with makespan criterion. The additional constraint, called
time couplings, limits the minimal and maximal idle time for each machine. We have
presented a mathematical model of the problem and a graph model of the problem
solution. Next, we proved several properties of the problem concerning feasibility
of solutions and time required to compute the value of the makespan. We have
also proved that solution graph, despite having cycles, does not contain cycles with
positive length, making it possible to compute the longest path in that graph.

The main results is a proposed method of computation of the makespan on
a CREW PRAM computation model using a modification of the Floyd-Warshall
algorithm for finding shortest paths in graphs. This method, coupled with large size
of solution neighborhood for the considered problem, allows for very high speedup
(in thousands) of the process of searching the solution neighborhood. However, the
method also faces several limitations due to massive number of processors it requires,
low efficiency and inter-node communication bottleneck.

It should also be noted, that the proposed method could be generalized to be
applicable for other types of scheduling problems. Other variants of the Flow Shop
Scheduling Problem (Permutation and Non-permutation, setup and transport times
or more general time couplings) would be the easiest. While not as easy, the method
could also be generalized to problems like Job Shop Scheduling Problem and Open
Shop Scheduling Problem or even other related discrete permutation-oriented opti-
mization problem like Traveling Salesman Problem or Vehicle Routing Problem.

The next step of research on this topic could include: (1) physical implemen-
tation of the proposed method and experimental research, (2) implementation of
the full algorithm encompassing more than just goal function computation, and (3)
consideration of different neighborhoods than Adjacent Pair Interchange.

References

1. Bach, I., Bocewicz, G., Banaszak, Z.A., Muszyński, W.: Knowledge based and cp-driven
approach applied to multi product small-size production flow. Control Cybern. 39(1), 69–95
(2010)

2. Bocewicz, G.: Robustness of multimodal transportation networks. Maint. Reliab. 16, 259–269
(2014)

3. Bocewicz, G., Muszyński, W., Banaszak, Z.: Models of multimodal networks and transport
processes. Bull. Pol. Acad. Sci. Tech. Sci. 63(3), 635–650 (2015)

18 W. Bożejko et al.

4. Bocewicz, G., Nielsen, P., Banaszak, Z., Thibbotuwawa, A.: Routing and scheduling of
unmanned aerial vehicles subject to cyclic production flow constraints. Adv. Intell. Syst. Com-
put. 801, 75–86 (2019)

5. Bożejko, W., Gnatowski, A., Pempera, J., Wodecki, M.: Parallel tabu search for the cyclic job
shop scheduling problem. Comput. Ind. Eng. 113, 512–524 (2017)

6. Bożejko, W., Hejducki, Z., Wodecki, M.: Flowshop scheduling of construction processes with
uncertain parameters. Arch. Civ. Mech. Eng. 19(1), 194–204 (2019)

7. Bożejko, W., Idzikowski, R., Wodecki, M.: Flow Shop Problem with Machine Time Couplings,
vol. 987. Springer, Cham (2020)

8. Bożejko, W., Smutnicki, C., Uchroński, M., Wodecki, M.: Cyclic Two Machine Flow Shop
with Disjoint Sequence-Dependent Setups, pp. 31–47. Springer International Publishing, Cham
(2020)

9. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms, 2nd edn.
McGraw-Hill Higher Education (2001)

10. Gicquel, C., Hege, L., Minoux, M., van Canneyt, W.: A discrete time exact solution approach
for a complex hybrid flow-shop scheduling problem with limited-wait constraints. Comput.
Oper. Res. 39(3), 629–636 (2012)

11. Gonzàilez-Neira, E., Montoya-Torres, J.: A simheuristic for bi-objective stochastic permutation
flow shop scheduling problem. J. Proj. Manag. 4, 57–80 (2017)

12. Grabowski, J., Pempera, J.: Some local search algorithms for no-wait flow-shop problem with
makespan criterion. Comput. Oper. Res. 32(8), 2197–2212 (2005)

13. Harbaoui, H., Khalfallah, S., Bellenguez-Morineau, O.: A case study of a hybrid flow shop with
no-wait and limited idle time to minimize material waste. In: 2017 IEEE 15th International
Symposium on Intelligent Systems and Informatics (SISY), pp. 207–212 (2017)

14. Kanet, J.J., Sridharan, V.: Scheduling with inserted idle time: problem taxonomy and literature
review. Oper. Res. 48(1), 99–110 (2000)

15. Luo, J., El Baz, D.: A dual heterogeneous island genetic algorithm for solving large size flexible
flow shop scheduling problems on hybrid multicore CPU and GPU platforms. Math. Probl.
Eng. 1–13(03), 2019 (2019)

16. Luo, J., Fujimura, S., Baz, D.E., Plazolles, B.: GPU based parallel genetic algorithm for solving
an energy efficient dynamic flexible flow shop scheduling problem. J. Parallel Distrib. Comput.
133, 244–257 (2019)

17. Melab, N., Gmys, J., Mezmaz, M., Tuyttens, D.: Many-Core Branch-and-Bound for GPU
Accelerators and MIC Coprocessors, pp. 275–291. Springer International Publishing, Cham
(2020)

18. Mishra, A.K., Shrivastava, D., Bundela, B., Sircar, S.: An efficient Jaya algorithm for multi-
objective permutation flow shop scheduling problem. In: Venkata Rao, R., Taler, J. (eds.)
Advanced Engineering Optimization Through Intelligent Techniques, pp. 113–125. Springer
Singapore, Singapore (2020)

19. Pan, Q.K., Ruiz, R.: An effective iterated greedy algorithm for the mixed no-idle permutation
flowshop scheduling problem. Omega (U. K.) 44, 41–50 (2014)

20. Pempera, J., Smutnicki, C.: Open shop cyclic scheduling. Eur. J. Oper. Res. 269(2), 773–781
(2018)

21. Potts, C.N., Shmoys, D.B., Williamson, D.P.: Permutation vs. non-permutation flow shop sched-
ules. Oper. Res. Lett. 10(5), 281–284 (1991)

22. Rudy, J.: Cyclic scheduling line with uncertain data. In: Lecture Notes in Computer Science,
pp. 311–320 (2016)

23. Ruiz, R., Stützle, T.: An Iterated Greedy heuristic for the sequence dependent setup times
flowshop problem with makespan and weighted tardiness objectives. Eur. J. Oper. Res. 187(3),
1143–1159 (2008)

24. Santosa, B., Siswanto, N., Fiqihesa: Discrete particle swarm optimization to solve multi-
objective limited-wait hybrid flow shop scheduling problem. IOP Conf. Ser. Mater. Sci. Eng.
337, 012006 (2018)

Parallel Computing for the Non-permutation Flow Shop … 19

25. Smutnicki, C., Pempera, J., Rudy, J., Żelazny, D.: A new approach for multi-criteria scheduling.
Comput. Ind. Eng. 90, 212–220 (2015)

26. Steinhöfel, K., Albrecht, A., Wong, C.-K.: Fast parallel heuristics for the job shop scheduling
problem. Comput. Oper. Res. 29, 151–169 (2002)

27. Wang, P.-S., Yang, T., Chang, M.-C.: Effective layout designs for the Shojinka control problem
for a TFT-LCD module assembly line. J. Manuf. Syst. 44, 255–269 (2017)

28. Ünal, A.T., Aǧral, S., Tas̨n, Z.C.: A strong integer programming formulation for hybrid flow-
shop scheduling. In: Journal of the Operational Research Society, pp. 1–11 (2019)

