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and Mieczys�law Wodecki3

1 Department of Automatics, Mechatronics and Control Systems,
Wroc�law University of Technology, Janiszewskiego 11-17, 50-372 Wroc�law, Poland

{wojciech.bozejko,mariusz.uchronski}@pwr.edu.pl
2 Institute of Computer Science, University of Wroc�law, Joliot-Curie 15,

50-383 Wroc�law, Poland
pawel@cs.uni.wroc.pl

3 Department of Telecommunications and Teleinformatics, Wroc�law University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroc�law, Poland
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Abstract. In the work we consider a job shop problem with due dates
under conditions of uncertainty. Uncertainty is considered for operation
execution times and job completion dates. It is modeled by normal and
Erlang random variables. We present algorithms whose constructions
are based on the tabu search method. Due to the application of the
probabilistic model, it was possible to obtain solutions more resistant to
data disturbances than in the classical approach.
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1 Introduction

The paper deals with the job-shop problem, widely regarded as one of the most
difficult combinatorial problems. Due to many of its practical applications, it has
been intensively researched for many years. There are few works that dealt with
the deterministic job shop problem with additional parameters and constraints.
One of the few is the work of Balas et al. [1], which deals with the problem of
the job shop with time windows, penalties for untimely completion of jobs and
machine setups. A review of different variants of multi-machine problems with
machine setups is contained in Sharma and Janin [8]. There are definitely fewer
works devoted to the job shop problem with uncertain parameters. Kim et al. [5]
presented a modification of classical construction algorithms solving determin-
istic scheduling problems. Shoval and Efatmaneshnik [9] consider the problem
in which jobs execution times are random variables with a normal distribution.
The method of determining the set of feasible schedules is presented, as well as
the criteria for selecting an appropriate sub-optimal schedule from this set.
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There are several practical reasons for introducing due dates. First, there
might be dependencies to other departments or contracted delivery dates as a
part of the over supply chain processes. The other reason is that there might be
time window when machines are not available e.g., because of some maintenance
activities. In this paper we consider a job shop problem with due dates for jobs
completion and penalties for tardy jobs, applying total weighted tardiness cri-
terion. Uncertain parameters, i.e., processing times and due dates are random
variables with the normal or Erlang distributions. Normal distribution is the
natural choice when we expect a standard behavior of some phenomenon, obvi-
ously we can also leverage very useful mathematical properties in the modeling
transformations. Erlang distribution was investigated as, for set of parameters, it
introduces a possibility to model events which diverge from the standard behav-
ior. This distribution also offers some useful mathematical properties which have
been applied in the modeling activities.

2 Problem Formulation

The literature presents various ways of defining the job shop problem, nev-
ertheless in this paper we will use the definitions and symbols from [4]. Let
J = {1, 2, . . . , n} be a set of jobs, M = {1, 2, . . . ,m} - a set of machines. By
O = {1, 2, . . . , o} we denote a set of operations, where an operation is equal
to an action of job execution on a machine in a machine order. Therefore, we
can partition the set of O operations into sequences corresponding to individual
jobs, i.e., define the j job as sequence of oj operation, which will be indexed
sequentially with the numbers (lj−1 + 1, . . . , lj). The operations should be per-
formed in a given order (technological order), where lj =

∑j
i=0 oi (j ∈ J , l0 = 0,∑n

i=1 oi = o). The operation k ∈ O should be performed on the μk ∈ M machine
in time (duration) pk > 0. For each job j there is a desired completion date dj

and designated a penalty factor wj for exceeding it. The considered variant of
the problem consists in determining the moments of starting the execution of
jobs on machines so that the technological order is maintained, and minimize
the sum of penalties for untimely execution of jobs (tardiness).

Over the years of research on the job shop problem, there have emerged
many ways of modeling it. In the following part, we will present one of them,
the so-called disjunctive graph. A disjunctive graph with weights in vertices can
be defined as a pair of sets G = (V,K ∪ D ∪ R) [4], defined as follows:

1. The set of the vertices of the graph V = {1, 2, . . . , o}∪{s, t}, where the vertex
i (i = 1, 2, . . . , n) corresponds to the i-th operation. The weight of a vertex
is equal to the execution time of the operation it represents. The remaining
(extra) vertices s and t have a weight zero.

2. The set of arcs is the union of the sets:
(i) conjunctive arcs K between successive operations within the job (repre-

senting the technological sequence): K =
⋃n

j=1

⋃lj−1
i=lj−1+1{(i, i + 1)},

(ii) disjunctive arcs D between operations performed on the same machine:
D =

⋃
i,j∈O,i �=j,νi=νj

{(i, j), (j, i)},
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(iii) arcs R, in the form of (s, lj−1 + 1) and (lj , t), where lj−1 + 1 is the first
and lj the last operation of the job j ∈ J .

The subset D′ ⊂ D containing exactly one arc from each pair of arcs is called
a representation of disjunctive arcs. It can be easily shown that the subgraph
G′ = (V,K ∪ D′ ∪ R) of the disjunctive graph G represents an feasible solution
if and only if G′ does not contain cycles.

For a determined feasible representation of D′, the time of completion of
i-th job Ci should be calculated as the length of the longest path in the graph
G′ = (V,K ∪ D′ ∪ R) from the vertex s to li (li – the last operation of job i).
Then Ti = max{0, Ci − di} is the job’s delay (tardiness), and F =

∑n
i=1 wiTi

the sum of the costs of tardiness (penalties).

3 Uncertainty

We will consider a job shop problem with random parameters, where the job
completion times Ci and the due dates di are expressed as random variables C̃i

and d̃i with normal or Erlang distributions. More specifically, we will consider
the following four cases: (A) C̃i ∼ N(Ci, α ·Ci), (B) d̃i ∼ N(di, β ·di), (C) C̃i ∼
E(Ci, 1), (D) d̃i ∼ E(di, 1), where the α, β parameters will be specified at the
stage of computational experiments. Additionally, we define a random variable
T̃i representing the size of delay (tardiness) of i-th job. After randomization,
to compare solutions (just like at paper [2]), we use the following comparative
criteria: WE =

∑n
i=1 wiE(T̃i), WED =

∑n
i=1 wi(E(T̃i)+θ ·D2(T̃i)), where E(T̃i)

is an expected value of T̃i, D2(T̃i) is an variation and a parameter 0 < θ < 1.
Criteria similar to WE and WED are considered in papers [2,3,7].

Normal Distribution. Here we will consider the following two cases: (A) C̃i ∼
N(Ci, α · Ci) and (B) d̃i ∼ N(di, β · di). If X is a random variable, then by FX

and fX we will denote its cumulative distribution function and density.
Case A (C̃i ∼ N(Ci, α · Ci)). Then, tardiness is a random variable defined

as T̃i = max{0, C̃i − di}. For shortening of the notation, let μi = (di − Ci)/σi.

Theorem 1. If the job completion times are independent random variables with
a normal distribution C̃i ∼ N(Ci, σi) (σi = α · Ci, then the expected value

E(T̃i) = (1 − FC̃i
(di))

(
σi√
2π

e
−(μi)

2

2 + (Ci − di)
(
1 − FN(0,1)(μi)

)
)

.

For calculating the value of the criterion function WED it is necessary to know
the standard deviation of the random variable T̃i. Because D2(T̃i) = E(T̃ 2

i ) =
(E(T̃i))2, we will present a method for determining the random variable T̃ 2

i .

Theorem 2. If the times of execution of jobs are independent random variables
with a C̃i ∼ N(Ci, σi) (σi = α ·Ci, i ∈ J ), then the expected value of the random
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variable T̃i
2

constituting the square of delay:

E(T̃i
2
) =

(
1 − FN(0,1) (νi)

)
(

(Ci − di)σi√
2π

e
−(μi)

2

2

+(C2
i + σ2

i + d2i − 2diσi)
(
1 − FN(0,1) (μi)

))
.

Both proven theorems allow quick calculation of the first two central moments
for random dates of jobs’ completion.

Case B (d̃i ∼ N(di, β · di)). Tardiness of job i ∈ J is T̃i = max{0, Ci − d̃i}.
We will now present two theorems that allow us to calculate the value of WE

and WED. We omit the proofs of theorems because they are similar to the proofs
of Theorems 1 and 2.

Theorem 3. If the requested due dates for completing jobs are independent ran-
dom variables with a normal distribution d̃i ∼ N(di, σi) (σi = β · di, i ∈ J ),
then the expected tardiness value

E
(
T̃i

)
= FN(0,1) (−μi)

(

CiFN(0,1) (−μi) +
σi√
2π

e−(−μi)
2
2 − diFN(0,1) (−μi)

)

.

Theorem 4. If the latest due dates for completing jobs are normally distributed
independent random variables d̃i ∼ N(di, σi) (σi = β · di, i ∈ J ), then the
expected value of the random variable T̃i

2

E(T̃i
2
) =FN(0,1) (−μi)

(
(d2i + σ2

i + C2
i − 2Cidi)FN(0,1) (−μi)

+
σi(Ci − di)√

2π
e

−(μ)2

2

)

.

Erlang Distribution. It results directly from the definition of the Erlang dis-
tribution that the density function of the random variable C̃i ∼ E(νi, λi)

fC̃i
(x) =

{ 1
(νi−1)!λ

νi
i xνi−1e−λix, if x > 0,

0, if x ≤ 0.
(1)

We will consider two cases: (C) C̃i ∼ E(Ci, 1) and (D) d̃i ∼ E(di, 1).
Case C (C̃i ∼ E(Ci, 1)). In this case, the tardiness in the execution times

T̃i = max{0, C̃i −di}. Similarly, as in the case of normal distribution, we present
two theorems claim that is used when calculating the value of the criterion
comparing the solution.

Theorem 5. If the job completion times C̃i are independent random variables
with the Erlang distribution E(Ci, 1), then the expected value of the job tardiness

E(T̃i) = (1 − FE(Ci,1)
(di))

(
Ci

(
1 − FE(Ci+1,1)(di)

)
−di

(
1 − FE(Ci,1)

(di)
))

.
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Theorem 6. If the job completion times C̃i are independent random variables
with the Erlang distribution E(Ci, 1), i ∈ J , then the expected value

E(T̃i
2
) =

(
1 − FE(Ci,1)

(di)
) (

Ci(Ci + 1)
(
1 − FE(Ci+2,1)(di)

)

− 2diCi

(
1 − FE(Ci+1,1)(di)

)
+ d2i

(
1 − FE(Ci,1)

(di)
))

.

In summary, when the job completion times arerandom variables with the
Erlang distribution, then the values of the function WE and WED are calculated
using the Theorem 5 and 6.

Case D (d̃i ∼ E(di, 1)). Similarly, as for case C, we determine the cumu-
lative distribution function of the density of job tardiness i ∈ J given as
T̃i = max{0, Ci − d̃i}. Then, we can proceed to calculate the expected values of
random variables T̃i and T̃i

2
.

Theorem 7. If the deadlines are independent random variables with the Erlang
distribution d̃i ∼ E(di, 1), i = 1, 2, . . . n, then the expected value of tardiness
E(T̃i) = FE(δ,1)(Ci)(CiFE(δ,di)

(Ci) − δ
di

FE(δ+1,1)(Ci)), where δ = d1 + . . . + di.

Theorem 8. If the due dates for completing jobs are independent random vari-
ables with the Erlang distribution d̃i ∼ E(di, 1), then the expected value of the
square of tardiness for δ = d1 + . . . + di is

E(T̃i
2
)=FE(δ,1)(Ci)

(
(δ + 1)FE(δ+2,1)(Ci)− 2CiδFE(δ+1,1)(Ci)+ C2

i FE(δ,1)(Ci)
)

.

Equalities (Theorem7 and 8) will be used in WE and WED calculation.

4 Computational Experiments

In order to carry out computational experiments, a simplified version of the tabu
search algorithm for solving the job shop problem presented in the work [4] was
adopted. Later in this section the deterministic algorithm will be denoted by AD,
whereas probabilistic one by AP, where APE denoted probabilistic algorithm
with criterion WE and APED – with WED criterion.

Test instances of 82 examples of deterministic data were taken from OR-
Library [6]. Additionally, in accordance with the uniform distribution, the coef-
ficients of the penalty function for the delay of the jobs wi were drawn from the
set {1, 2, . . . , 10}. Similarly, the requested completion dates for the di jobs were
drawn from the set [Pi, (3/2)Pi], where Pi =

∑m
j=1 pi,j , i = 1, 2, . . . , n. The set

of these (deterministic) data was marked with Ω. Let F be the solution value
determined by the tested algorithm, and F ∗ the value of the reference solution.
Relative error of the solution F given by δ = F−F ∗

F ∗ · 100% indicates by how
many percent the solution of the algorithm is worse/better than reference one.

Let η̃ be an instance of probabilistic data, Z(η̃) data set generated from η̃ by
disturbance of task execution times according to the assumed schedule. We have
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further: Aref – algorithm designating reference solutions, A – algorithm whose
resistance are tested (in our case AP or AP+B), π(A,x) – solution designated by the
algorithm A for data x, F (π(A,x), y) – value of criterion function of solution π(A,x)

for the instance y. Then Δ(A, η̃,Z(η̃)) =
∑

ϕ∈Z(η̃) F (πA,η̃,ϕ)−∑
ϕ∈Z(η̃) F (π(Aref ,ϕ),ϕ)

∑
ϕ∈Z(η̃) F (π(Aref ,ϕ),ϕ) ,

we call resistance of solution π(A,η̃) (designated by the algorithm A for the
instance η̃) on the set of distributed data Z(η̃).

If P̃ is a set of instances of probabilistic data of the examined problem, then
the expression S(A, P̃) = 1

|P̃|
∑

η̃∈P̃ Δ(A, η̃,Z(η̃)) we call a resistance coefficient

of the algorithm A on the set P̃. For one deterministic instance, we generate
three instances of probabilistic data from the set D. In total, probabilistic data
set P̃ has 1125 instances.

The most important results of the computational experiments are presented
in Tables 1 and 2. The AD column contains the results of the deterministic algo-
rithm. Columns labeled APE and APED contain the results of the probabilis-
tic algorithm based on the expected value or the expected value and variance,
respectively. In addition to the mean errors, additional columns were added with
the percentage of cases for which the probabilistic algorithm gave results not
worse than the deterministic algorithm (column %NG) and the corresponding
percentage for which the algorithm gave better results (in tables this column is
marked as %L).

Table 1. The robustness of the AD and AP algorithms expressed as a percentage for
random times with normal distribution.

Random α AD APE %NG %L APED %NG %L

Durations 0.1 60.93 68.34 70 51 73.17 56 49

0.2 69.91 78.58 66 62 88.81 49 44

0.3 71.13 81.12 62 60 88.65 46 45

0.4 80.41 85.68 63 62 92.16 52 52

Mean 70.60 78.43 65 59 85.70 51 48

Due dates 0.1 24.49 23.82 72 65 24.40 65 61

0.2 7.28 5.80 66 63 5.61 67 66

0.3 3.06 2.16 77 76 2.17 72 71

0.4 1.74 1.14 80 80 1.14 78 78

Mean 9.15 8.23 74 71 8.33 70 69

Part ‘due dates’ of Table 1 presents the results of computational experiments
for the case in which the requested due dates for completing jobs are random
variables with a normal distribution. This time we note that the resistance coef-
ficients are better for the probabilistic algorithm and this is the case for all β
parameter values. Moreover, also the percentage of cases for which the proba-
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bilistic algorithm was not worse or better is clearly in favor of the probabilistic
algorithm.

Table 2. The robustness of the AD and AP algorithms expressed as a percentage for
random times with Erlang distribution.

Random AD APE %NG %L APED %NG %L

Durations 57.20 57.14 90 54 268.32 45 38

Due dates 51.86 52.20 90 56 53.50 78 55

The jobs execution times in ‘durations’ part of Table 2 are random. We note
that the resistance coefficients are slightly better for the probabilistic algorithm.
Also, the percentage of cases for which the probabilistic algorithm was not worse
or better than the deterministic algorithm is significantly in favor of the prob-
abilistic algorithm. In turn, ‘due dates’ part of Table 2 presents test results for
the case in which the required due dates for completing jobs have the Erlang
distribution. We note that the resistance coefficients are slightly better for the
deterministic algorithm. On the other hand, however, if we look at the percent-
age of cases for which the probabilistic algorithm was not worse or better than
the deterministic algorithm, there is a noticeable advantage of the probabilistic
algorithm.

5 Summary

The performed computational experiments have shown that the solutions deter-
mined by the probabilistic version of algorithm are more robust to disturbances
(that is: stable) than the ones determined by the deterministic algorithm, for
majority of considered variants. Thus, the concept of uncertainty modeling and
comparing the solutions (being random variables) for solving the job shop prob-
lem with uncertain parameters were confirmed.
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