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Abstract. We consider strongly NP-hard problem of two-machine task
scheduling with due dates and minimizing of the total weighted tardi-
ness. Task execution times are random variables. We propose methods of
intermediate review of solutions, the so-called ‘block properties’, which
we use in the tabu search algorithm. From computational experiments
carried out it follows that the use of blocks significantly speeds up cal-
culations.
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1 Introduction

In a two-machine flow shop problem with minimizing the sum of lateness costs
(total tardiness, in short, F2T problem), each of the n tasks must be completed
on the first machine and then on the second machine. The time of completing
the tasks and the due dates (on the second machine) are given. Exceeding this
due date will result in a penalty, which depends on the size of the delay (so
called tardiness) and a fixed penalty factor (weight). The problem consists on
determining the order of tasks (the same on both machines) which minimizes the
sum of penalties. In the literature this problem is denoted by F2||

∑
wiTi. It is a

generalization of the NP-hard single-machine problem with the minimalization
of sum of penalties for tardiness 1||

∑
wiTi – a detailed description and algorithm

of its solution is provided in the work of Bożejko et al. [4].
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There are relatively few papers devoted solely to the F2T problem and meth-
ods of solving it. Some theoretical results, as well as approximation algorithms
are presented in the papers: Gupta and Harari [8], Lin [11], Bulfin and Hallah
[7]. Various variants of this problem were also considered by Ahmadi et al. [10],
Al-Salem et al. [1], Ardakan et al. [2] and Bank et al. [3]. Two-machine flow
problem with Cmax criterion (minimizing the end of execution time of all tasks,
F2||Cmax) is a problem with polynomial computational complexity (Johnson’s
algorithm [9]).

The research of discrete optimization problems conducted for many years
concerns the vast majority of deterministic models, in which the basic assump-
tion is the uniqueness of all parameters. To solve these types of problems, which
mostly belong to the class of strongly NP-hard problems, a number of effective
approximate algorithms in which specific properties of problems are applied.
However, in many areas of the economy we are dealing with random processes,
e.g. transport, agriculture, trade, construction, etc. Effective management of such
processes often leads to optimization models with random parameters. Already
for the deterministic case solving these problems is very difficult, because they
usually belong to the NP-hard class. The inclusion of parameter uncertainty in
the model causes additional complications. Hence, the problems with random
parameters are much less frequently studied. In this work we are considering a
random problem with times of tasks execution. We present some properties of
the problem (the so-called block elimination properties) accelerating the search
of neighborhoods. Due to their implementation, it is possible to eliminate infe-
rior solutions without having to calculate the value of the criterion function
(intermediate review method). First, we will describe the case of a problem with
deterministic task execution times, and then with the durations represented by
random variables.

2 Two-Machine Problem with Due Dates

Two-machine flow shop scheduling problem with minimalization of total
weighted tardiness (denoted by F2||

∑
wiTi) can be formulated as follows:

F2T Problem. A set of tasks is given J = {1, 2, . . . , n}, and a set of machines
M = {1, 2}. A task i ∈ J consists of two operations Oi1 and Oi2. An operation
Oik corresponds to performing a task i on a machine k. For a task i ∈ J we
define:
pik – execution time (duration) of the operation Oik,
di – requested completion time (due date),
wi – weight of penalty function for exceeding the due date (being tardy).

Each task should be executed on both machines and there must be fulfilled the
following constraints:

(a) each task must be completed on the first and then on the second machine,
(b) the task cannot be interrupted,
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(c) the request can be performed simultaneously on only one machine,
(d) the machine cannot perform more than one task at the same time,
(e) the task order, on both machines, must be the same.

For the fixed execution order on machines, let Sij be the time of beginning
of the operation Oij (i ∈ J , j = 1, 2). From constraints (b) and (c) it follows,
that Cij = Sij + pij is the finishing time of the operation Oij . These moments
can be determined from the following recursive relationships:

Ci,j = max{C(i−1),j , Ci,(j−1)} + pi,j , i = 1, 2, ... .n, j = 1, 2, (1)

with starting conditions C0,j = 0, j = 1, 2 and Ci,0 = 0, i = 1, 2, . . . , n. By
Ci = Ci2 we denote finishing time of execution of the task i (operation Oi2).
Therefore

Ti = max{0, Ci − di} (2)

is tardiness of execution of the task i, fi = wi · Ti penalty for being tardy (cost
of a task execution). If Ti = 0 than this task is called early, otherwise – tardy.

Any solution, i.e. the order in which the tasks are to be carried out (the
same on both machines) can be represented by the permutation of tasks from
the set J . Let Π be a set of all such permutations. For any permutation π =
(π(1), . . . , π(n)), π ∈ Π, penalty for tardiness of tasks execution (cost)

T (π) =
n∑

i=1

wπ(i) · Tπ(i). (3)

In the F2T problem under consideration, the order of tasks execution should
be determined, which minimizes the sum of penalties for tardy tasks, i.e. optimal
permutation π∗ ∈ Π, for which

T (π∗) = min{T (π) : π ∈ Π}. (4)

In the introduction we wrote that the two-machine flow problem with the
C max criterion belongs to the P class. Johnson’s algorithm [9] is used for solving
this problem.

Any sequence of immediately following elements in we will call sub-permuta-
tion. If

η = (π(u), π(u + 1), . . . , π(v)), 1 ≤ u ≤ v ≤ n, (5)

is a sub-permutation of a permutation π, then the cost of tasks execution from η

Tπ(η) =
v∑

i=u

(wη(i) · (Cη(i) − dη(i))), (6)

where Cη(i) is a finishing time of execution of the task η(i) in the permutation
π. By Y(η) we denote a set of elements of sub-permutation η, i.e.

Y(η) = {π(u), π(u + 1), . . . , π(v)}.
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Let

α = (1, 2, . . . , a − 1), β = (a, a + 1, . . . , b − 1, b), γ = (b + 1, . . . , n), (7)

where 1 ≤ a ≤ b ≤ n be sub-permutations in π.
Therefore permutation π = (α, β, γ) is a concatenation of three sub-permu-

tations, and its cos
T (π) = Tπ(α) + Tπ(β) + Tπ(γ). (8)

3 Random Task Execution Times

In this section we consider the probabilistic version of F2T problem – scheduling
tasks on two machines with due dates. We assume that task execution times
are independent random variables. Extensive review of methods and algorithms
for solving optimization combinatorial problems with random parameters was
presented by Vondrák in a monograph [12] and newer [13]. Some practical prob-
lems are also considered in the works of Bożejko et al. [6] and [5]. We will now
introduce the necessary definitions and notions.

If X is a continuous random variable, we will use the following symbols later
in this work:

FX – cumulative distribution function of a random variable X,
E(X) – expected value of a random variable X.

We consider, described in the previous chapter probabilistic version of the
F2T problem, in which the task execution times p̃ij are independent random
variables, and the remaining task parameters wi and di (i = 1, 2, . . . , n) are
deterministic. This problem we will briefly refer to as PF2T.

If tasks durations p̃ij are independent random variables, than for any tasks
execution order π ∈ Π, a time of a task π(k) finishing C̃π(k), tardiness T̃π(k) =
max{0, C̃π(k) − dπ(k)} and cost function

T̃ (π) =
n∑

i=1

wπ(i) · T̃π(i). (9)

are also random variables.
There is a necessity in algorithms for solving optimization problems com-

paring the value of the criterion function for various acceptable solutions (e.g.
permutation). In case this function is a random variable (9) we will be they used
her expected value. Therefore, the following function will be used as comparative
criteria for solutions:

L(π) = E(T̃ (π)) =
n∑

i=1

wπ(i) · E(T̃π(i)). (10)

In the rest of the work we present the methods for calculating the value of
criterion function (10).
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If β = (π(a), π(a + 1), . . . , π(b)), where 1 ≤ a ≤ b ≤ n is a sub-permutation
of a permutation π ∈ Π,

L(β) =
b∑

i=a

wπ(i) · E(T̃π(i)). (11)

is a cost of tasks execution of a sub-permutation β.

4 Blocks of Tasks

We consider a permutation π ∈ Π – a solution of PF2T problem. If an expected
value of the execution finishing time of a task π(i), E(C̃π(i)) ≤ dπ(i) than this
task π(i) we call early, otherwise, if E(C̃π(i)) > dπ(i), late (tardy).

Later in this chapter we present a method of constructing sub-permutations
(called blocks) containing only early or tardy tasks.

4.1 Blocks of Early Tasks

Let a permutation π ∈ Π define a sequence (7) of three sub-permutations, i.e.
π = (α, β, γ). For tasks from sub-permutation β = (a, a + 1, . . . , b − 1, b) we
assume the duration of the task on the machine

pij = E(p̃ij), i ∈ J , j ∈ M. (12)

Then, we use the described in Sect. 2 Johnson’s algorithm. In this way we set a
new order of tasks from the set Y(β), i.e. sub-permutation

β′ = (a′, a′ + 1, . . . , b′ − 1, b′). (13)

We will call it Johnson optimal, in short J-opt. One can easily prove that this
is the optimal order, due to the minimization of the expected date value of
completion of all tasks in the set Y(β).

We consider permutations π = (α, β, γ) and π′ = (α, β′, γ). It’s easy to show
that if sub-permutation β′ is J-opt, then the finishing time of the last task in β′

is not greater than the finishing time of the last task in β.

Theorem 1. Let β be J-opt sub-permutation in the permutation π = (α, β, γ),
π ∈ Π. If permutation σ = (α, δ, γ) was generated from π by changing the order
of tasks in sub-permutation β, then expected value of the execution finishing time
for any task from γ in the permutation σ is not less than the time of finishing
of this task in the permutation π.

The proof should use the assumption: sub-permutation β is J − opt.

Definition 1. If all the tasks from J-opt sub-permutation β after insertion into
the first position in β are on-time, then we call β block of early tasks (in
short T-block).
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Theorem 2. (Elimination T-block property) If a permutation σ was generated
from π ∈ Π by changing the order of tasks in a T-block, then

L(σ) ≥ L(π). (14)

One should take advantage of T-block definition in proof.

Remark 1. While generating new permutations from π one can omit these of
them, which were generated by changing the order in any T-block. They do not
give an improvement in the cost function value.

4.2 Blocks of Tardy Tasks

Let a permutation of tasks order π = (1, 2, . . . , a − 1, a, a + 1, . . . , b − 1, b, b +
1, . . . , n) = (α, β, γ), where α = (1, 2, . . . , a − 1), β = (a, a + 1, . . . , b − 1, b),
γ = (b + 1, . . . , n). We assume then that a sub-permutation β of all the tasks is
tardy, and additionally

∀i ∈ β, di < E(C̃a−1 + p̃i,2). (15)

If a = 1 we assume E(C̃a−1) = 0. It follows from the above inequality that any
task from the sub-permutation β inserted into the first position of β, i.e. position
a is late (tardy). Let us assume, that the tasks from β fulfill inequalities (15).
We generate two new permutations from π: π′ = (α, β′, γ) and π′′ = (α, β′′, γ),
where Y(β) = Y(β′) = Y(β′′)). We define sub-permutations β′ and β′′ occuring
in both permutations as follows:

(a) in β′ we set the order of the elements using the Johnson algorithm (it is
therefore subpermutation J-opt),

(b) we construct the sub-permutation β′′ by setting the tasks from the set Y(β),
according to non-growing values wv/E((p̃v,1 + p̃v,2)), v ∈ Y(β).

Definition 2. Sub-permutation β′′ defined in (b) we call a block of tardy
tasks, in short D-block, if

(E(C̃b′′) − E(C̃b′))/E(C̃b′′) ≤ ϕ,

where ϕ is a parameter which we assign experimentally.

While, E(C̃b′′) and E(C̃b′) are expected values of finishing time of the last task
in sub-permutation β′ and β′′, respectively, which were defined in (a) and (b).

A parameter ϕ (whose value is determined experimentally) is a measure
enabling estimation of the difference between expected values of finishing times
of tasks from Y(β) in order β′′ and β′. For a small value of ϕ (e.g. 0.1) they
differ only ‘a little’. Then, β′′ sub-permutation is quasi optimal for tasks from
the set Y(β), both due to the expected value of the finishing time and the cost.

A D-block does not meet the elimination block property: ‘reordering elements
in block does not generate solutions with a smaller value of criterion function’.
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Despite this fact we will use them to eliminate certain solutions from neighbor-
hood, due to its empirical advantage.

Any permutation can be partitioned into sub-permutation such that each is
a T-block or a D-block. The algorithm for determining blocks is similar to the
one presented in the paper [4] and has computational complexity O(n2).

5 Tabu Search Algorithm

Standard version of the tabu search method was used to solve the considered
T2FS problem, with the neighborhood generated by insert type moves. The
procedure of generating the environment uses blocks so that some elements are
omitted without the necessity to calculate their criterion function value. In order
to diversify the search process, a ‘backtrack jump’ mechanism was applied that
resumes the process searches from remembered promising solutions. It is imple-
mented through the introduction of the so-called long-term memory, abbreviated
to LTM). A return jump (to the last saved LTM element) is executed in a case
where through a certain number of iterations there is no improvement of the
best solution. The algorithm terminates after a fixed number of iterations.

6 Random Tasks Execution Times

Let δ = (p̃ij , wi, di), i = 1, 2, . . . , n, j = 1, 2 be a data instance for the PF2T
problem, where tasks execution times p̃ij are independent random variables with
normal distribution, i.e. p̃ij ∼ N(pij , λpij), and λ a fixed parameter. For the
simplification, let’s assume that the order of performing tasks (the same on both
machines)

β = (1, 2, . . . , n). (16)

To calculate the value of the cost function

L(β) = E(T̃ (β)) =
n∑

i=1

wβ(i) · E(T̃β(i)), (17)

where T̃β(k) = max{0, C̃β(k) −dβ(k)}, it is necessary to determine tasks execution
finishing times C̃β(k). We introduce additional values:

C ′
i,j =

⎧
⎨

⎩

∑i
k=1 pi,j , for j = 1,

C ′
i,j−1 + pi,j , for i = 1, j = 2,

max{C ′
i,j−1, C

′
i−1,j} + pi,j , for i > 1, j = 2.

Finally random variable representing the time of finishing of the i-th task

C̃′
i ∼ N(C ′

i2, λ
√

C ′
i2).

Let

μi = p1,1 + p2,1 + . . . ,+pi,1 + pi,2 and σi = λ
√

p21,1 + p22,1 + . . . ,+p2i,1 + p2i,2.
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When calculating the expected value E(T̃i) appearing in the definition of the
criterion function (17), we will use the following theorem.

Theorem 3. If tasks duration are independent random variables with normal
distribution p̃ik ∼ N(pik, λ ·pik) (i = 1, 2, . . . , n, k = 1, 2) then an expected value
of tardiness of the task i ∈ J

E(T̃i) = (1 − FC̃′
i(di)

)

(
σi√
2π

e
−(di−μi)

2

2σ2
i + (μi − di)

(

1 − FN(0,1)(
di − μi

σi
)
))

.

The proof of this theorem is similar to the one given in Bożejko et al. [6].

7 Computational Experiments

Computational experiments were carried out on two versions of the tabu search
algorithm for solving the PF2T probabilistic problem:

1. PTS – an algorithm with neighborhood generated by swap moves,
2. PTR+b – an algorithm with elimination block properties application.

The main goal of the experiments was to examine the stability of algorithms, i.e.
the resistance of solutions to random data disturbances (times of operations).
The exact algorithm stability was described in the paper of Bożejko et al. [6].
The starting solution for both algorithms was the natural permutation π =
(1, 2, . . . , n), and in addition: the length of the list of tabu moves: n, number of
algorithm iterations: 2n. The algorithms have been implemented in C++ and
run on a PC with a 2.8 GHz clock.

Because in the literature there are no examples of tests for the problem
under consideration, for the needs of execution computational experiments were
generated randomly. Times for completing tasks on individual machines were
randomly designated, in accordance with uniform distribution from the set
{1, 2, . . ., 99}, and weights the penalty function wi, from the set {1, 2, . . . , 9}.
The values requested deadlines for completing tasks have been set based on
two parameters: T – latency factor and R – timeliness range. These terms,
according to the uniform distribution, were randomly selected from the range
[P (1−T −R/2), (1−T +R/2)], where P =

∑n
i=1

∑2
j=1 pi,j . Test examples were

generated for each pair of parameter values T = 0.2, 0.4 and R = 0.2, 0.4 (the
larger the coefficients, the more difficult the generated examples). There are four
such pairs in total. The examples were generated for the number of tasks n = 100
and 500. For each pair of T and R values 25 examples were generated. Ultimately,
200 examples were used for the performed computational experiments whose
collection (the so-called deterministic data) is denoted by Ω. Then, for each
example (pij , wi, di), i = 1, 2, . . . , n, j = 1, 2 of the deterministic problem two
examples of probabilistic data were determined (p̃ij , wi, di), where the operation
duration was a random variable with a normal distribution p̃ij ∼ N(di, λ · pij)
for λ = 0.02, 0.05. The collection of this data (the so-called probabilistic data) is
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denoted by Ω̃. To examine the stability of probabilistic algorithms, a disturbed
data set Ω≈ was generated. For each example of deterministic data (pij , wi, di)
50 examples of disturbed data were generated. The disorder consists in changing
the duration of operation pij into randomly designated value, according to the
distribution of N(pij , λ · pij). In total, 10,000 examples were given. They were
then solved by the tabu search algorithm. The results obtained were the basis
for determination of the stability coefficient of probability algorithms PTS and
PTS+b. Aggregate results are included in the Table 1.

Table 1. Stability coefficient of probabilistic algorithms.

Instance n λ = 0.02 λ = 0.05

PTS PTS+b PTS PTS+b

T = 0.2, R = 0.2 100 3.41 3.37 2.24 2.27

T = 0.2, R = 0.4 100 3.82 3.87 3.06 2.99

T = 0.4, R = 0.2 100 4.78 4.77 4.02 3.99

T = 0.4, R = 0.4 100 5.12 5.01 3.52 3.35

T = 0.2, R = 0.2 500 4.68 4.55 4.79 4.66

T = 0.2, R = 0.4 500 5.34 5.93 6.13 6.31

T = 0.4, R = 0.2 500 7.11 6.58 8.09 8.01

T = 0.4, R = 0.4 500 10.28 9.54 12.64 10.07

Average 5.57 4.80 5.56 4.32

The main purpose of the carried out experiments was to examine individ-
ual stability of algorithms, i.e. the robustness of solutions determined by these
algorithms for random changes (disturbances) of parameters. Among the proba-
bilistic algorithms tested, he proved to be more stable the ‘with blocks’ algorithm
PTS+b. Its stability factor is 4.56. That is, the data disorder (according to the
described random procedure) causes average relative deterioration criterion (in
relation to the best solution of this example) of 5.56%. The PTS+b algorithm
stability factor is 5.57. In addition, it turned out that the use of blocks in a
probabilistic algorithm resulted in a shortening of the average calculation time
by about 30%. The results obtained prove the high efficiency of the blocks.

8 Conclusions

The paper examines the problem of scheduling tasks on two machines, in which
the times of task execution are random variables. Blocks of tasks were intro-
duced to eliminate the use of solutions with the environment generated by swap
movements that require in the taboo algorithm search. Computational experi-
ments were carried out in order to study the impact of blocks on computation
and analize the times of designated solutions. The results obtained are clearly
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available, the use of blocks significantly reduces calculation time and improves
the stability of solutions. Application of elements of probability in the adapta-
tion of tabu search methods allows one to solve uncertain data problems. These
are very difficult optimization problems, much better describing reality than
deterministic models.
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