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Abstract. In the paper we consider the problem of scheduling of tech-
nological operations implementation in productions cells in a company
which produce steel structures of car seats. We propose an optimiza-
tion algorithm based on the Branch and Bound method which deter-
mines minimal number of team members which operating production
cells maintaining the maximum efficiency of the cells. The usefulness of
the algorithm for practical purposes has been verified on real data.
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1 Introduction

Robotization and automation of manufacturing systems enables relatively quick
adaptation of production plans to the demand generated by contractors. This is
particularly important in the case of production in large volumes, large sizes or
with large masses. Then, storage costs can be a significant part of the cost of
manufacturing of the final product. In this type of companies, a just-in-time or
just-in-sequence strategies are used.

In the enterprise at work, the process of manufacturing seats and other car
equipment includes product design, computer and real-life testing related to the
safety of their use, and the production of finished products. Extensive experience
in both designing and production of products allows the company to produce
many products for many contractors.

Despite of the significant and continuous development of robots and automa-
tion devices, the most important element of the manufacturing system is man.
In advanced production systems, its role is often to precisely place processed
products in the holders of automatic welding machine modules, to make welding
corrections or to weld in hard to reach places, to carry out product quality control
and to level and polish the surface of products at various stages of production.

Nowadays a chronic shortage of highly-qualified workforce is observed in
many countries. This situation does not change significantly despite an increase
in financial incentives for employees. Therefore, effective management of the staff
is very important.
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2 Manufacturing Cell

The task of a typical production cell is to weld previously embossed metal parts
into a raw intermediate or end product. In later stages, it is varnished and
packaged. The cell consists of several working places (here called machines). In
each of the machines, specific technological activities are performed. Most often
these are welding operations performed in welding modules or in a few cases by
hand. Welding operations are preceded by the placement of the product in the
holder that the operator performs and supervises. The machines in the cell are
placed on the perimeter of the straight-angle. Metal parts produced on the press
and other parts are delivered in containers placed in a separate place near the
working place.

Cells are designed for the production of one product or several types of similar
products. The change of production from one product to another requires in
some cases the replacement of some tools. Products in the cell are produced
in series. In one series, identical products are produced. There are no buffers
(temporary storage places) between the positions where the partially processed
product could be stored. It is caused by a limited surface allocated for the cell
and additional activities and costs related to the operation of buffer devices. The
operator may serve several machines, in particular, machines that are physically
close to each other. The maximum productivity of the production cell is directly
related to the time of performing the longest technological activity.

Cyclic production is required to increase the efficiency and simplify the oper-
ation of the operators. In cyclic production, the operator performs most of the
working time in the same order. This rule does not apply for a short period at
the beginning and the end of the production of series of products.

We want to set a minimum number of cell operators (employees, or – in the
future – robots) ensuring production with its maximum efficiency. Determination
of such a number is of special importance at the time of high absenteeism of
employees or urgent execution of many orders for contractors.

3 Problem Description

The production cell consists of m production machines from the set M =
{1, 2, . . . ,m}. In the cell, cyclically, n products should be made. Each product
is processed in each machine in the order of 1, 2, . . . , m. Each product therefore
generates a production task consisting of m operations. There are no buffers
between stations [11,12] (so called no-store constraint). The processing time of
the job at the position k ∈ M is pk > 0 [minutes]. The maximum cell productivity
is defined as

P = 60/max
k∈M

pk (1)

pieces per hour.
Each employee is qualified to work in any machine, performs the tasks in a

given machine or supervises them throughout the entire processing time in the
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position. Only one product can be made at a given time, the product can be
processed on only one machine and the employee can work on only one machine.
Performing tasks on machines cannot be interrupted.

Each technological operation performed by the operator in the system is rep-
resented by the pair (j, i), where j = 1, 2, ..., n denotes the sequence number of
the product, and i ∈ M machine for the cell. Let us denote by αk the order of
performing technological activities by the operator k = 1, 2, ..., o. The sequence
of performing all operations by operators in the production cell is described by
α = (α1, . . . , αo), αk = (αk(1), . . . , αk(nk)), where nk is the number of opera-
tions performed by the operator k. Further, let us denote by Sj,i and Cj,i the start
and completion time, respectively, of the task j on a machine i. The schedule of
performing tasks for a given sequence α has to fulfill the following constraints:

Sj,i ≥ 0, j = 1, . . . , n, i = 1, . . . ,m, (2)

Sj,i ≥ Cj,i−1, j = 1, . . . , n, i = 2, . . . ,m, (3)

Cj,i = Sj,i + pj,i, j = 1, . . . , n, i = 1, . . . ,m, (4)

Sαk(s) ≥ Cαk(s−1), s = 2, . . . , nk, k = 1, . . . , o, (5)

Sαk(s) ≥ SA(αk(s−1)), s = 2, . . . , nk, k = 1, . . . , o, (6)

where A((j, i)) = (j, i + 1) denotes the technological successor of the operation
(j, i). Inequality (2) anchors the task execution schedule at time 0. Inequality
(3) means that the start time of the operation of a given task cannot be earlier
than the end of the previous operation of this task. Equality (4) means that
the operation cannot be interrupted. It results from the inequality (5) that the
start time of the s-th operation performed by the operator k can only start after
the previous operation has been completed. The limitation “no-store” models
the constraint (6) and means that we can start operations only after the job
has been released by the previous task, i.e. when the next operation of this task
begins its execution.

The order of operations performed by the α operators is feasible if there is
a solution of the inequalities (2–6). Checking the feasibility of α and the sched-
ule of performing operations in the order α can be determined in time O(nm) by
constructing a directed graph based on the inequalities (2–6) (similar to work [8]).

The sequence α will be called the cyclic sequence if it is constructed on the
basis of a cyclic core. The cyclic core consists of cyclically performed m opera-
tions for one or more tasks. The order of executing operations from the cyclic
core will be denoted by symbolem π = (π1, . . . , πo), πk = (πk(1), . . . , πk(ϑk)),
m =

∑o
s=1 ϑs where ϑk is the number of operations performed by the operator

k. Then the order α is a core assembly, i.e.

∝= π0ππ . . . ππ∗, (7)

where π0 - stands for the preliminary order, ππ...π - repeatedly repeating the
cyclic core, π∗ - the ending order.

The most commonly considered literature in the literature are fully auto-
mated production cells in which the transport of products is carried out by an
industrial robot [3,6,7,9].
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3.1 Example

The production cell consists of m = 6 positions and is operated by o = 4
operators. The names of technological activities and machining times [in sec-
onds] are given in Table 1. Operators 1, 2, 3 perform only one operation respec-
tively 3, 4 and 6, while operator 4 operations 1, 2 and 5. Consider a cyclic core
π = (π1, . . . , π4), in the following form: π1 = ((1, 3)) , π2 = ((1, 4)) , π3 = ((1, 4)) ,
π4 = ((5, 1) , (1, 3) , (2, 3)).

The system should perform n = 7 products. For such a cyclic core, the order π0

andπ∗ take the formπ0 = (π0
4),whereπ0

4 = ((1, 1), (2, 1), (1, 2), (2, 2), (1, 3), (2, 3))
and π∗ = (π∗

1 , π
∗
2 , π

∗
3 , π

∗
4) , where π∗

1 = ((5, 3), (6, 3), (7, 3)) , π∗
2 = ((5, 4), (6, 4),

(7, 4)), π∗
3 = ((5, 6), (6, 6), (7, 6)) , π∗

4 = ((5, 5), (6, 5), (7, 5)).

Table 1. Technological activities performed in the production cell

Position Operation name Execution time [sec.]

1 Clinching 45

2 Welding 26

3 Welding 134

4 Manual welding 104

5 Gurtholma welding 34

6 Assembly 104

Figure 1 illustrates the schedule for performing operations in the form of
Gantt chart. In the graph: dotted line, the schedule for performing operations
resulting from the order π0 and π∗ is marked, the continuous operation schedule
resulting from the first and last occurrence of the cyclic core is marked, the

Fig. 1. The schedule of operations performed by operators
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Table 2. Schedule of technological operations

Part Operations

1 2 3 4 5 6

1 S1i 0 45 71 205 309 343

C1i 45 71 205 309 343 447

2 S2i 71 116 205 339 443 477

C2i 116 142 339 443 477 581

3 S3i 205 250 339 473 577 611

C3i 250 276 473 577 611 715

4 S4i 343 388 473 607 711 745

C4i 388 414 607 711 745 849

5 S5i 477 522 607 741 845 879

C5i 522 548 741 845 879 983

6 S6i 611 656 741 875 979 1013

C6i 656 682 875 979 1013 1117

7 S7i 745 790 875 1009 1113 1147

C7i 790 816 1009 1113 1147 1251

dashed line the delay resulting from station blocking due to the lack of interstate
buffer. In addition, the start and end times of all operations are summarized in
Table 2.

Let us note that the operator 4 supports 3 positions: 1, 2 and 5. Therefore,
they should be located nearby, eg stations 1 and 2 should be placed next to each
other while 5 in front of positions 1 and 2. The work schedule of this operator
is the most complicated, especially at the beginning of work. First, it performs
the first two operations of the first task, then the first two operations of the
second task, then it must wait for the second position to be released (i.e. until
the task 2 in step 1 starts) and perform the first two operations of the third task.
Subsequent production activities of the operator 4 are carried out cyclically and
consist of three technological operations, successively in stand 5, 1 and 2, and a
break related to the wait for the operator 2 to complete the operation.

4 Optimization Algorithm

At the very beginning, note that after a sufficient number of repeats of the cyclic
core, the starting moments for the corresponding operations belonging to two
successive cores x − 1 and x are separated by the same period of time T , i.e.

Sx,i = Sx−1,i + T, i = 2, . . . ,m. (8)

The period T will be called the cycle time. It is easy to see that the production
socket works at full productivity (its performance is limited by the time of the
longest operation performed) if the cycle time is maxk∈M pk .
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The length of the cycle time for the cyclic core π can be determined by
generating the order α and determining T in the steady state. Unfortunately,
this type of method requires the generation of α based on the large number
of core repetitions. Cycle time can be determined much faster using a method
similar to that used in [1,2,4,5,10].

In a natural way, the lower limit of the number of operators is FT/T , where
FT =

∑m
s=1 ps is the time the task flows through the production system, while

the upper limit is equal to the number of machines. The minimum number of
operators can be determined by searching half of the minimum number of oper-
ators for which a schedule with cycle time T = maxk∈M pk can be constructed.

Due to the small number of operations in the cyclic core, it was decided to
construct a complete review algorithm, in which all possible operations assign-
ments to operators and all possible operator execution orders are generated.
During the operation of the algorithm, cyclic cores fulfilling the condition

max
k∈M

ϑk∑

i=1

pπk(i) > T, (9)

were not generated.
Of course, among the cores that meet this condition may be those for which

it is impossible to construct a cyclic schedule with a cycle time T . The algorithm
ends when the core is found with the cycle time T or after generating all cyclic
cores for a given number of operators.

5 Computational Experiments

Computer research was carried out on 20 products produced in the company.
The following data was collected for each product:

1. m - the number of technological operations,
2. FT =

∑m
s=1 ps- time of task flow through the production system,

3. T = maxk∈M pk – cycle time.

Next, the minimum number of employees NO was determined by the opti-
mization algorithm and the following were determined:

1. FT/T - lower bound estimation of the number of employees,
2. m/NO - the ratio of the number of positions to the number of employees.

The optimization algorithm has been implemented in C++ in the Visual Studio
2010 environment and launched on a computer with an Intel i7 2.4 GHz processor
working under the Windows 8.1 operating system. The operation time of the
optimization algorithm for each product did not exceed several dozen seconds.
The analysis of the experimental results collected in Table 3 shows that in all
20 cases, the algorithm has determined the optimal number of operators equal
to the lower bounds estimation. It should be noted that determining the lower
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Table 3. Results of experimental research

Product m FT T NO FT/T m/NO

1 9 10.197 2.39 5 5 1.8

2 10 11.049 2.39 5 5 2

3 12 12.579 2.989 5 5 2.4

4 12 12.579 2.989 5 5 2.4

5 12 13.431 2.989 5 5 2.4

6 5 19.129 10.6 2 2 2.5

7 5 19.563 10.6 2 2 2.5

8 5 13.258 9.204 2 2 2.5

9 6 7.452 2.232 4 4 1.5

10 7 13.319 4.061 4 4 1.7

11 8 14.399 4.061 4 4 2

12 8 17.498 7.416 3 3 2.6

13 9 18.212 7.416 3 3 3

14 6 13.002 4.41 3 3 2

15 5 18.09 12.766 2 2 2.5

16 3 5.202 2.487 3 3 1

17 3 4.044 1.825 3 3 1

18 3 4.044 1.825 3 3 1

19 3 4.405 2.186 3 3 1

20 3 12.321 5.187 3 3 1

bound of the number of employees is trivial, but determining the allocation of
operators to machines and technological activities and determining a schedule
for their implementation for most products is very difficult and requires the use
of the proposed algorithm.
The values of the m/NO coefficient range from 1 to 2.6. The value means that
for certain products the number of employees is equal to the number of machines,
so each employee only serves one machine. In the case of the highest value of
this coefficient, the average employee supports as many as 2.6 machines, i.e. 3
employees operate 8 machines in the production cell with full efficiency.

6 Summary

The work considers the problem of determining the smallest number of operators
in a multi-station manufacturing cell. The original concept of the so-called a
cyclic core simplifying the sequence of servicing many positions by employees.
The method of constructing the order of performing all technological activities
and the schedule of their implementation has been proposed.
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An optimization algorithm based on the method of an all-round review of all
cyclic cores has been proposed. The algorithm eliminates the generation of cyclic
cores for which the schedule would not guarantee operation of the cell with a
full productivity. Research has been carried out on 20 products manufactured
in a company that makes car seats. For all products, a minimum number of
employees was set equal to the lower estimate and an acceptable work schedule.

The method of constraints modeling proposed in the work and the opti-
mization algorithm can be used to design manufacturing cells and determine
the number of employees, assign them to machines, set a cyclical schedule of
their implementation for new production cells and improve the existing ones.
The proposed exact algorithm is proposed, therefore the number of employees is
determined optimally.
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