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a b s t r a c t

In the paper a construction scheduling problem – namely flowshop – with minimizing the

sum of penalties for exceeding the deadline of building structures completion is considered.

The problem is illustrated by the investment task concerning the implementation of twelve

apartment buildings forming a part of a new housing estate. Uncertain parameters of the

system are represented either by fuzzy numbers or random variables, whereas random

variables have normal or the Erlang distribution. Since even the deterministic version of the

problem is strongly NP-hard, the approximate algorithm based on the tabu search method

was used to its solution. The performed computational experiments showed large solution

resistance against any potential interference of parameters of the problem.
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1. Introduction

In the process of negotiation of construction contracts there
appears the necessity to estimate a clear deadline for work
completion. This task is very difficult due to the high degree of
uncertainty resulting from the existence of many parameters
changing during the execution of works. Exceeding the
established deadlines causes considerable losses (contractual
penalties or unused resources). Hence, the need for such
modeling of building projects that most closely match the
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course of the actual construction processes is very important
(see, e.g. [16,9,14,15]). The above mentioned need leads to
complex discrete-continuous optimization problems with
uncertain parameters and irregular goal functions. While
transferring the problems of construction projects scheduling
in the field of classical theory of tasks scheduling one
encounters many difficulties associated with choosing not
only the right model but also the appropriate algorithm. The
above mentioned tasks are usually brand new, strongly NP –

hard combinatorial optimization problems (see [1,6]), for which
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Fig. 2 – Facade works.

Fig. 1 – Object oriented layout plan.
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today there are not known optimized algorithms of polyno-
mial computational complexity. Therefore, in practice, there
are fast approximate algorithms with elements of artificial
intelligence often used.

An integral part of many management systems is planning
of construction projects in flow systems [16,13,4,20]. They
concern the implementation of complex building structures
consisting of many identical works (for example: earthworks,
foundation works, construction works, roofing, installation of
windows or facades, finishing works, etc.) arising in the field of
construction documentation, performed by working brigades.

The investment task considered in the case study concerns
the implementation of twelve apartment buildings forming
part of a new housing estate. They are similar in terms of
technology. The basis for estimating the time of work
performance are workpieces and the Catalog of Material
Outlays, on the basis of which work labor intensity can be
determined. After establishing and agreeing the necessary
human resources (work groups), the possible duration of
works is calculated, transforming a number of man-hours onto
working days. The data determined in this way form the
Structure of the Division of Works, defining the technological
order of works.

Fig. 1 shows the design of the complex of build objects. Each
object denoted by ZAD I, ZAD II and ZAD III consists of several
similar (identical) segments denoted as Seg A, Seg B, Seg C and
Seg D (at the bottom of the ground, service facilities, and above
them – residential). The order of construction works, on each
of the segments is the same. However, due to the standards of
finish, size of rooms, etc. times of similar works are different.
In the general scope of works, operations which will be carried
out by specialized staff brigades were separated, which makes
possible to order the tasks as a flow work system ( flowshop).
This made it possible to plan the delivery of materials in the
Just-in-Time system, i.e. without storing them. Fig. 2 shows a
fragment of one of the objects during the execution of facade
works, as a one of final steps of pipeline scheme of works.

Flow systems in the field of construction are equivalent of
the flow production in the industry (flowshop). Build object are
recognized as tasks (jobs), working brigades – machines, and
work made by brigades is recognized as operations.

Due to such factors as the use of both new techniques and
technologies, the unique, atmospheric and geological condi-
tions, etc. there is often no possibility to determine, in an
unambiguous way, the value of certain parameters of
schedules of works, specifically to determine the completion
time for all works. In such cases we deal with the decision-
making process under uncertainty.

It is commonly believed that the data collected in
management practices are usually uncertain and imprecise.
Their values change frequently already at the stage of adopted
solutions, destroying its optimality, sometimes admissibility.
In addition, the instability leads to completely useless in
practice solutions. Thus, the uncertainty of the data translates
directly to the amount of risk. The choice of approach for
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modeling and analysis of unreliable data depends on the
characteristics of the system, possibilities of data measure-
ments execution, credibility of the data, effectiveness of
theoretical tools, power of available software packages, etc.
Knowledge of all the above mentioned elements is essential in
the process of efficient solving of practical problems.

Flow work systems in construction are of interest in many
scientific centers. It results from the need of optimal
management of construction of large engineering structures,
among others: sections of roads, bridges, building complexes,
industrial facilities, etc. There is a great need to improve
traditional methods of scheduling (taking into account e.g.
new technologies or data uncertainty) and effective use of
modern computational methods.

In this paper we consider the problem of minimizing the sum
of penalties for exceeding of the agreed deadlines for the
completion of building structures. It belongs to a class of strongly
NP-hard problems. We assume, moreover, that the times of
works execution in building structures are uncertain. We model
each with a triangular fuzzy numbers and random variables with
normal or the Erlang distribution. Many authors consider normal
distribution as a behaviour of construction works duration times.
We can cite here Czarnigowska and Sobotka [7] in which
construction  duration normality check was based on the analysis
of residual histograms, scatter diagrams and normality tests of
Kolmogorov–Smirnov/Lilliefors and Shapiro–Wilk. A mathemat-
ical model, solution algorithms and computational experiments
are presented in our work. The main purpose of the carried out
experiments was to examine the effect of disturbing the
execution times of construction works on changing of the
penalty functions for failure to meet the deadlines for comple-
tion of individual building structures.

2. Flowshop systems in construction

We consider the construction project (abbreviated to CP)
consisting in execution of n structures from the set

O ¼ fO1; O2; . . .; Ong;
by m brigades from the set

B ¼ fB1; B2; . . .; Bmg:
Each structure Oi 2 O is a sequence of m works

Oi ¼ ½Pi;a; Pi;b; . . .; Pi;m�;
wherein the work Pi,j (i = 1, b, . . ., n, j = 1, 2, . . ., m) in structure Oi

is executed by brigade Bj in time pi,j. Works in the structure
Oi 2 O must be done in a given technological order, i.e. any job Pi,j
is to be carried out after the completion of Pi,j�1, but before the
commencement of Pi,j+1 (2 ≤ j ≤ m � 1). At the same time the
following constraints must be met:

(i) every work (in the building structure) can be executed only
by one, determined by the technological order (sequence),
brigade

(ii) any brigade cannot perform at the same time more than
one work,
(iii) technological order must be maintained on every building
structure,

(iv) execution of any work cannot be interrupted before its
completion.

The problem is to determine the order of execution, by each of
the brigades, work in the structures (i.e. permutation of
objects), for which certain fixed criterion reaches its optimum
and restrictions (i) – (iv) are met.

Any solution to the problem in question can be represented
by permutation of structures. Let p be some permutation of
structures (elements of the set OÞ. This permutation deter-
mines the order of execution of subsequent works in order, i.e.
brigade Bj 2 B carries out the work Pp(i),j in structure pðiÞ 2 O,
after execution of works Pp(1),j, Pp(2),j, . . ., Pp(i�1),j successively in
order p(1), p(2), . . ., p(i � 1), but before performing works Pp(i+1),j,
Pp(i+2),j, . . ., Pp(n),j in structures p(i + 1), . . ., p(n). Let us denote by F

the set of all the possible permutations of structures. The
cardinality of this set is n !.

If work in the structures are performed in the order of p 2 F

whereas pp(i),j is the time of execution of work Pp(i),j (i = 1, 2, . . .,
n, j = 1, 2, . . ., m) then a moment of the completion of work
Cp(i),j can be determined from the following recursive
relationship:

CpðiÞ;1 ¼
X
k¼1

i
ppðkÞ;1; i ¼ 2; c; . . .; n; (2.1)

Cpð1Þ;j ¼ Cpð1Þ;j�1 þ ppð1Þ;j; j ¼ 2; 3; . . .; m; (2.2)

CpðiÞ;j ¼ maxfCpðiÞ;j�1; Cpði�1Þ;jg þ ppðiÞ;jg; (2.3)

for i = 2, 3, . . ., n, j = 2, 3, . . ., m.

In this case, the moments of the beginning of works are

SpðiÞ;j ¼ CpðiÞj�ppðiÞ;j; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .; m: (2.4)

It can be easily checked that determined by (2.1)–(2.4)
moments of commencement and completion of works on the
building structures meet the limitation (i)–(iv), hence they are
the acceptable solutions to CP problem.

Model of the above described construction project is known
in the theory of scheduling as a flowshop problem. If we consider
the criterion of minimizing the completion time of all
structures (Cmax), then it belongs to a class of strongly NP-hard.
Due to the exponentially growing computation time of exact
algorithms, these problems are usually solved with heuristic
methods. A comprehensive overview of methods and algo-
rithms, including solutions based on artificial intelligence,
were presented in the works [10,18].

In construction practice, a very important criterion is
execution of each building structures, which meets the
deadline, or a possible minimization of penalties for exceeding
of agreed, in the contract, terms. These are very difficult
problems with irregular functions. In the further part of the
work we will present one of such examples.

For ith structure Oi 2 O, let di be its required completion time,
and wi weight of tardiness penalty function. If p 2 F is a certain
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order of execution of works in structures and Cp(i) = Cp(i),m is
date of completion of works in structure, and p(i) is an ith job of
an order p, then Tp(i) = max{0, Cp(i) � dp(i)} is tardiness, whereas
wpðiÞ�TpðiÞ is tardiness penalty for structure execution. Then

FðpÞ ¼
Xn
i¼1

wpðiÞ�TpðiÞ (2.5)

is tardiness penalty for structure execution in the order p (in
short permutation penalty p).

In the next part we consider the problem of CP with
minimizing function (2.5). This amounts to designating a
permutation p* 2 F such that

Fðp�Þ ¼ minfFðpÞ : p 2 Fg: (2.6)

The problem CP with minimizing the sum of the penalties for
tardiness of construction structures execution (2.5) will be
denoted by CPF. It belongs to a class of stronglyNP-hard pro-
blems. Indeed, if we assume that the set of brigades (machines)
M ¼ f1g, then we get a strongly NP-hard single machine prob-
lem of tasks scheduling with minimization of the sum of the
cost of tardiness (in literature it is denoted by 1jjPwiTi). Multi-
machine problems with sum-cost goal functions were consid-
ered in the works: [19,23,11].

3. Flowshop system with uncertain work
times

Discrete optimization problems with uncertain parameters are
solved with the use of probabilistic methods or theory of fuzzy
sets. In the first case (e.g. [8,19]) distribution of random
variables is important. Some processes are inherently random
and depend upon weather, traffic, number of accidents,
geological conditions, equipment failure, etc. If they also
possess certain history, on the basis of existing statistical data,
it is possible to specify their distributions.

However, in many matters, uncertainty of the data is non-
random, but results from the uniqueness of the process (e.g.
construction, technology, materials, etc.), error in measure-
ment, etc. In such a case, the natural way of representing
uncertainty are fuzzy numbers. The problem there is the
proper selection of membership function and defuzzification
method (i.e. conversion of fuzzy numbers into real numbers).
In the following part of the work we use both of the approaches
to scheduling of work performed in the flow system. For
simplicity, wherever the ambiguity can be avoided the order of
building structures execution(permutation) p = (1, 2, . . ., n) is
assumed.

4. Uncertain tasks times

It is assumed that the times of works execution are not
deterministic. They will be represented either by fuzzy
numbers or random variables.
4.1. Fuzzy tasks times

In this paper the fuzzy tasks times are represented by a
triangular membership function m (i.e. 3-tuple bpi;j ¼ ðpai;j; pbi;j;
pci;jÞ; i = 1, 2, . . ., n, j = 1, 2, . . ., m with the following properties:

(a) pai;j � pbi;j � pci;j,
(b) m(x) = 0 for x�pai;j or x � pci;j,
(c) mðpbi;jÞ ¼ 1,
(d) m is increasing on ½pai;j; pbi;j� and decreasing on ½pbi;j; pci;j�.

Let u = hp, d, wi (where p=½pi;j�n�m
is the matrix of the works

execution times, whereas d and w are n element vectors of
respectively deadlines for the completion of structures and
weights of penalty function) be an example of deterministic
data to CPF problem. We assume that the time for works
execution, i.e. elements of matrix ½pi;j�n�m

; are triangular fuzzy
numbers of the form:

bpi;j ¼ ðpi;ja; pi;j
b; pi;j

cÞ:

Then, bu ¼ hbp; d; wi, where bp ¼ ½bpi;j�n�m
is the matrix of fuzzy

numbers, called fuzzy data, and the problem is fuzzy, in short
denoted by dCPF.

The execution is determined by a fuzzy number

bpi;j ¼ ðpi;ja; pi;j
b; pi;j

cÞ;

then its finishing time is a fuzzy number in the form of:

bCi;j ¼ Ca
i;j; Cb

i;j; Cc
i;j

� �
;

where Ca
i;j; Cb

i;j and Cc
i;j can be determined from the following

recurrent formulas:

Ca
i;j ¼ maxfCa

i�1;j; Ca
i;j�1g þ pai;j;

Cb
i;j ¼ maxfCb

i�1;j; Cb
i;j�1g þ pbi;j;

Cc
i;j ¼ maxfCc

i�1;j; Cc
i;j�1g þ pci;j;

with the initial conditions

Ca
0;j ¼ Cb

0;j ¼ Cc
0;j; j ¼ 1; 2; . . .; m;

Ca
i;0 ¼ Cb

i;0 ¼ Cc
i;0; i ¼ 1; 2; . . .; n:

By bCi ¼ bCi;m fuzzy number bCi ¼ ðCa
i ; Cb

i ; Cc
i Þ is denoted

representing the moment of completion of the structure
i 2 O: Then deffuzification is carried out, i.e. conversion of fuzzy
numbers bCi ¼ ðCa

i ; Cb
i ; Cc

i Þ; i = 1, 2, . . ., n, into real number as
follows:

Cf
i ¼

1
4

Ca
i þ Cb

i þ Cb
i þ Cc

i

� �
: (4.1)

Then, tardiness(equivalent of Ti)

Tf
i ¼

di�Cf
i ; if Cf

i > di;

0; if Cf
i�di;

(
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and the comparison criterion of solutions (equivalent of func-
tion (2.5) for a permutation p 2 F) is

Ff ðpÞ ¼
Xn
i¼1

wpðiÞT
f
pðiÞ: (4.2)

The algorithm solving the dCPF problem, in which as the com-
parison criterion there will be solutions function (4.2) applied,
will be called fuzzy algorithm.

4.2. Probabilistic tasks times

Let u = hp, d, wi be an instance of the problem with
deterministic data for CPF problem. It is assumed that the
times of execution of works pi;j; i 2 O; j 2 B are independent
random variables ~pi;j. Similarly as in the case of fuzzy data, the
three ~u ¼ h~p; d; wi, where ~p ¼ ½~pi;j�n�m

is matrix of random
variables, are called the probabilistic data, and the problem –

probabilistic, in short denoted by gCPF.
As a comparison criterion of solutions (the equivalent of

function (2.5), for a permutation p 2 F), in the algorithm
solving the problem of gCPF, we will use two functions:

FpEðpÞ ¼
Xn
i¼1

wpðiÞEð~TpðiÞÞ; (4.3)

FpEDðpÞ ¼
Xn
i¼1

wpðiÞðEð~TpðiÞÞ þ t�Dð~TpðiÞÞÞ; (4.4)

where Eð~TiÞ is the expected value, and Dð~TiÞ – the standard
deviation of random variable ~Ti – tardiness of ith object.
Parameter t is determined by the expert or experimentally.

By FX and fX we will denote respectively the cumulative
distribution and density function of the random variable X. For
considered in the work distributions of random variables
(normal or Erlang), density function is equal to the derivative
of the cumulative distribution function, i.e. fXðxÞ ¼ F0XðxÞ: What
is more, a well-known equality will be used

D2ðXÞ ¼ EðX2Þ�ðEðXÞÞ2: (4.5)

Hence, in order to calculate the variance of random variable X,
it is necessary only to calculate the expected values of the
variables X and X2. When calculating the values of the function
FpE (4.3) and FpED (4.4) we will be using the properties that were
proven in the paper Bożejko et al. [5].

Normal distribution
The problem of gCPF is considered, in which times of works

execution are independent random variables with normal
distribution ~pi;j 	 Nðpi;j; ai;j�pi;jÞ; i = 1, 2, . . ., n, j = 1, 2, . . ., m .
Parameters ai,j are determined by an expert or experimentally.
In this particular case, the times of completion of structures
execution are also random variables. We can approximate
random tasks completion times by random variables which
have a normal distribution
~Ci 	 Nðmi; siÞ; (4.6)

where

mi ¼ ai�ðpi;1 þ pi;2þ; . . .; pi;mÞ and si

¼ bi�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2i;1 þ p2i;2þ; . . .; p2i;m

q
; (4.7)

are respectively the expected value and standard deviation.
The values of the parameters ai, bi (i = 1, 2, . . ., n) will be
determined experimentally. In this case, the tardiness of the
structures execution is also a random variable

~Ti ¼
~Ci�di; if ~Ci > di;
0; if ~Ci�di:

�
(4.8)

It is easy to show, that the cumulative distribution of the ~Ti

variable is

F~Ti
ðxÞ ¼ F~Ci

ðdi þ xÞ�F~Ci
ðdi þ xÞF~Ci

ðdiÞ þ F~Ci
ðdiÞ; if x > 0;

0; if x�0:

�
(4.9)

Equations which makes possible Eð~TpðiÞÞ and Eð~T2
pðiÞÞ determi-

nation were proven in the paper Bożejko et al. [5]. Therefore, if
the times of tasks execution are independent random vari-
ables normally distributed, then – when calculating the value
of function (4.3) or (4.4).

Erlang distribution
We assume that the moments of execution of works pi,j are

independent random variables having the Erlang distribution,
pei;j 	 Eðpi;j; 1Þ: Similarly, the moments of completion of building
structures are random variables having the Erlangs distribu-
tion

~Ci 	 Eðmi; liÞ; (4.10)

where

mi ¼ ai�ðpi;1 þ pi;2þ; . . .; pi;mÞ and li ¼ vi�i: (4.11)

Parameters ai and vi are determined experimentally.

In this case, the tardiness in the execution of ith structure is

~Ti ¼
~Ci�di; if ~Ci > di;
0; if ~Ci�di;

�
(4.12)

and distribution function

~TiðxÞ ¼ ð1�F~Ci
ðdiÞÞf ~Ci

ðx þ diÞ; if x > 0;
0; if x�0:

�
(4.13)

Similar as for the normal distribution, values of Eð~TpðiÞÞ and
Eð~T2

pðiÞÞ in FpE (4.3) and FpED (4.4) can be determinate with using
equations proven in the paper Bożejko et al. [5].

5. The tabu search algorithm

In solving NP-hard problems of discrete optimization we
almost always use approximate algorithms. The solutions
given by these algorithms are, in their appliance, fully
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satisfying (they often differ from the best known solutions by
less than 1%). Most of them belong to the local search methods
group. Their acting consists in viewing in sequence a subset of
a set of acceptable solutions, and in pointing out the best one
according to a determined criterion. One of this method
realizations is the tabu search, whose basic criterions are:

(a) neighborhood – a subset of a set of acceptable solutions,
whose elements are rigorously analyzed,

(b) move – a function that converts one solution into another
one,

(c) tabu list – a list containing the attributes of a certain
number of solutions analyzed recently,

(d) ending condition – most of the time fixed by the number of
algorithm iterations.

Let p 2 F be a (starting) permutation, L a tabu list, F costs
function, and p* the best solution found at this moment (the
starting solution and initial value of p* can be any permutation
because it will be changed immediately after beginning of the
algorithm work).

To solve the problems considered in this work (determin-
istic and with uncertain times of work execution) there was an
algorithm adopted which had been included in the work
Bożejko et al. [3]. In order to speed up the calculations, in
addition, there were used not only multimoves but also
elements of neighbourhood described in the works [2,3,22].
Below we present in details the basics elements of the
algorithm.

5.1. The move and the neighborhood

Let p = (p(1), . . ., p(n)) be a permutation from the F, and

ZðpÞ ¼ fpðiÞ : CpðiÞ > dpðiÞg;

a set of late structures in p.

By pk
l (l = 1, 2, . . ., k � 1, k + 1, . . ., n) we mark a permutation

received from p by changing in p the element p(k) and p(l). We
can say at that point that the permutation pk

l was generated
from p by a swap move (s-move) skl (it means that the
permutation pk

l ¼ skl ðpÞ). Then, let MðpðkÞÞ be a set of all the
s-moves of the p(k) element. By

MðpÞ ¼
[

pðkÞ 2 ZðpÞMðpðkÞÞ;

we mean an s-moves set of the late elements p in the permu-
tation. The power of the set MðpÞ is top-bounded by n(n � 1)/2.

The neighborhood p 2 F is the permutation set

NðpÞ ¼ skl ðpÞ : skl 2 MðpÞ
n o

:

While implementing the algorithm, we remove from the
neighborhood the permutations whose attributes are on the
forbidden attributes list L.

5.2. The tabu list

In order to avoid generating a cycle (by returning to the same
permutation after a small number of algorithm iterations),
some attributes of every move are saved on a tabu list. It is
operated according to the FIFO queue. By making the srj 2 MðpÞ
(generating from p 2 F the permutation pr

j ) we write on the
tabu list L of this move's attributes, the tuple ðpðrÞ; j; Fðpr

j ÞÞ.
Suppose, that we analyze the move skl 2 MðbÞ generating

from b 2 F the bkl permutation. If the tuple (r, j, C), such that b

(k) = r, l = j and Fðbkl Þ � C is on the L list, such a move is
forbidden and removed from the MðbÞ set. The only parameter
of this list is its length, the number of the elements it contains.
There are many realizations of the tabu list in the bibliogra-
phy.

The basic version of the algorithm has been modified
accordingly which made it possible to perform calculations for
uncertain (fuzzy or random) times of works execution.

6. Algorithms stability

Let p ¼ ½pi;j�n�m
be (deterministic) jobs execution times for an

instance of the CPF problem. By DðpÞ we describe a set of
examples of data generated from p by the disturbance of jobs
execution times (i.e. elements from p). The disturbance
consists in random changes of pi,j values, i = 1, 2, . . ., n, j = 1,
2, . . ., m.

We use the following notion:

A - an algorithm of solving CPF problem,
p ¼ ½pi;j�n�m

- an instance of data (execution times) for the
CPF problem,

pA
p - a solution (jobs permutation) determined by

the algorithm A for the data p,
FðpA

p ; d) - a value of the cost function for the data d and
a sequence of jobs execution (permutation) pA

p .

Let p be an instance of deterministic data and DðpÞ a set of
disturbed data. For an algorithm A and an instance of
disturbed data d

dðA; p; dÞ ¼ FðpA
p ; dÞ�FðpA

d ; dÞ
FðpA

d ; dÞ �100%: (6.1)

This formula defines a percentage relative deviation of the cost
function value for the d if jobs are executed in the sequence pA

p

and pA
d . By

DðA; p; DðpÞÞ ¼ 1
jDðpÞj

X
d 2 DðpÞ

dðA; p; dÞ (6.2)

we define the stability of the best solution of an instance p
determined by an algorithm A on the set of disturbed data
DðpÞ.

Let V be a set of some (deterministic) data instances for the
CPF problem. The algorithm stability A on the data set V

SðA; VÞ ¼ 1
jVj

X
p 2 V

DðA; p; DðpÞÞÞ: (6.3)
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6.1. Computational experiments

Presented in Section 5 tabu search algorithm was programmed
in C++ and run on a personal computer with a 2.4 GHz
processor. The computations were made on the basis of six
groups of Taillard examples [21] for the problem of FjjCmax).
Each group n � m: 20 � 5, 20 � 10, 20 � 20, 50 � 5, 50 � 10,
50 � 20 contains 10 examples (a total of 60 examples). Weights
of penalty function wi were generated with the use of uniform
distribution from the set {1,2,. . .,10}, whereas the required
deadlines for the completion of structures were determined
using the following procedure

Step 1: compute

ri ¼
Xm
k¼1

pi;k; i ¼ 1; 2; . . .; n:

Step 2: For each structure Oi designate the required
completion moment

di ¼ d rið1 þ 3eÞ e :

Parameter e is a realization of a random variable with uniform
distribution over the interval [0,1]. A similar method of data
generating is described in the works by Hasij and Rajendra [11].
A set of all 60 of deterministic examples is denoted by V . For each
example of deterministic data there was a corresponding instance
of data with fuzzy and probabilistic (normal distribution and the
Erlang distribution) times of works execution established:

1 Fuzzy times of works execution
If pi,j (i = 1, 2, . . ., n, j = 1, 2, . . ., m) is an instance of

deterministic data for the BFP problem, then fuzzy jobs
execution times bpi;j are represented by a triple ðpai;j; pbi;j; pci;jÞ,
where

pai;j ¼ d pi;j�pi;j=3 e g; pbi;j ¼ pi;j; and pci;j ¼ d pi;j þ pi;j=2 e :

This set of data is denoted by bV.

2 Random execution times of works
(a) normal distribution:

– execution times of works ~pi;j 	 Nðpi;j; ai;j�pi;jÞ; where ai,

j = 0.2,
– moments of completion of building structures

~Ci 	 Nðmi; siÞ; where mi = ai � ( pi,1 + pi,2 +, . . ., pi,m),
ai = 0.75 and si ¼ bi�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2i;1 þ p2i;2þ; . . .; p2i;m

q
; bi = 0.15,

(b) Erlangs distribution:
– times of works execution ~pi;j 	 Eðpi;j; 1Þ;
– moments of completion of structures ~Ci 	 Eðmi; liÞ;
where mi = ai � ( pi,1 + pi,2 +, . . ., pi,m), ai = 0.75 and
li = vi � i, vi = 0.8 .

A set of these data is denoted by ~V
N
and ~V

E
.

Algorithms
Computational experiments were carried out on several

versions of an algorithm described in Section 5:

1 AD – deterministic algorithm with the function of choice of
element from the neighborhood (2.5), deterministic data V.
1. AF - fuzzy algorithm with fuzzy times of works execution
and the function selecting an element from the neighbor-
hood (4.2), fuzzy data bV.

2. ANE; ANED – probabilistic algorithms with times of works
execution normally distributed and function selecting
elements from the neighborhood respectively with normal
distribution, and the function selecting the elements from
the neighborhood respectively (4.3) or (4.4), probabilistic
data ~V

N
.

3. AEE; AEED - probabilistic algorithms with times of works
execution with the Erlang distribution and function select-
ing elements from the neighborhood respectively (4.3) or
(4.4), probabilistic data ~V

E
.

Starting permutation.
Starting solution of algorithms, whose construction was

based on the tabu search method, was determined with the
use of the NEH algorithm [17]. The algorithm requires
designating of a sequence of structures execution. Hence,
they were sorted in a non-increasing order in reference toPm

j¼1pi;j�di, i = 1, 2, . . ., n.
Algorithms' parameters. Taking two examples of each

group of deterministic the following parameters were deter-
mined:


 the length of tabu list,
ffiffiffi
n

p
,


 the number of algorithms' iterations, n2,

 parameter in the formula (4.4), u = 0.1 .

6.2. Computational results

Since for the considered problem there are no comparative data
in the literature, we must limit ourselves to comparison of only
the results of the algorithms presented in the work. Firstly, the
quality of solutions designated by individual algorithms was
examined. The results of a deterministic algorithm AD and both
probabilistic – ANE and AEE algorithms – were compared with
the solutions designated by the NEH algorithm. For any
example, let FA be the value of the objective function of the
solution designated by the algorithm A 2 fAD; AF; ANE; AEEg:
Then, ðFNEH�FAÞ=FNEH�100% is percent relative error (improve-
ment) of the solution FA in reference to the value of the solution
FNEH determined by the NEH algorithm.

Table 1 presents average daprd and maximum dmrpd percentage
improvement (relative errors) for the different groups of data.

Comparing the average relative error daprd, it appears that
regardless of the number of works and machines, the
deterministic algorithm AD determines much better solutions
than the algorithms with uncertain times of works execution.
In this case, the mean improvements of the solutions of the
algorithm AD is 8.53% and is definitely greater than the other
algorithms. It can be seen specifically for the examples with a
larger number of objects. Average maximum errors dmrpd have
similar proportions. The results of two other probabilistic
algorithms ANED and AEED; were not presented since they are
similar to the results of algorithms ANE and AEE: The
computation time of one algorithm, of all 60 examples did
not exceed 5 seconds.



Table 1 – Improvement of the solutions designated by the NEH algorithm.

n � m AD AF ANE AEE

daprd dmrpd daprd dmrpd daprd dmrpd daprd dmrpd

20 � 5 5.19 9.54 3.27 8.67 3.57 7.15 4.17 9.17
20 � 10 6.37 9.26 4.86 6.25 4.01 10.27 4.16 8.65
20 � 20 10.02 14.08 8.74 11.18 6.13 11.82 4.54 10.44
50 � 5 7.64 11.63 6.51 9.27 6.31 11.34 5.32 8.59
50 � 10 11.83 16.37 9.83 9.13 6.09 9.76 4.99 8.39
50 � 20 9.07 12.08 8.11 14.92 7.25 12.81 5.81 9.87
Average 8.53 12.16 6.88 9.90 5.56 10.52 4.83 9.18

Table 3 – Time duration of works (processes) on objects.
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6.3. The stability of algorithms

In order to investigate the stability of algorithms there were
sets of proper perturbed data generated. The basis was 60
examples of deterministic data from the set V.

Generating of perturbed data. Let w be an example of
deterministic data with times of works execution p ¼ fpi;jgm�n

:

For the example w there wer 100 examples of perturbed data
generated - elements of the set Dð’Þ. If the example of the
perturbed data is ’0 2 Dð’Þ; then the perturbed times of works
execution p0i;j were drawn in accordance with the uniform
distribution, from the interval

½maxf1; d pi;j�pi;j=3 e g; d pi;j þ pi;j=2 e �:

Other elements of examples of w and w0 (i.e. moments of works
completion and penalty function coefficients) are the same.

In total there was 6000 examples of the disturbed data
generated. They were then solved by the algorithm AD, whose
solutions served as the basis for designation of the stability
coefficient of the studied algorithms. The results of the
conducted numerical experiments are given in Table 2.

Both fuzzy and probabilistic algorithms ANE and ANED have
a stability coefficient far smaller than the deterministic
algorithm. For the fuzzy times of the works execution the
fuzzy algorithm AF has the smallest stability coefficient 3.63%
and it is almost twice as small as the size of 6.72% – the
coefficient of a deterministic algorithm AD. The coefficient
3.63% of the algorithm AF results in the fact that the random
disturbance of the execution times of works causes the
deterioration of the value of the goal function (in reference
to the solutions of the algorithm ADÞ by 3.63% by mean.
Probabilistic algorithms with times of works execution
normally distributed have also, although slightly, smaller
stability coefficient than the coefficient of the algorithm AD.
Table 2 – Stability coefficient of SðA; VÞ algorithms.

n � m AD AF ANE AEE ANED AEED

20 � 5 4.23 1.89 2.13 4.77 4.17 3.9
20 � 10 4.17 2.57 3.02 5.63 4.09 6.72
20 � 20 7.69 2.85 3.17 8.42 5.98 7.27
50 � 5 6.84 4.07 5.37 10.17 7.53 9.46
50 � 10 7.99 4.62 4.99 12.59 8.97 12.88
50 � 20 9.44 5.83 6.11 13.26 9.16 11.76
Average 6.72 3.63 4.13 9.14 6.65 8.66
The other two probabilistic algorithms AEE and AEED have the
greater stability coefficient. In summary, based on the
obtained results, it can be concluded that the fuzzy algorithm
is much more stable than the others. The solutions deter-
mined by the fuzzy algorithm are much less sensitive to
possible random changes of the parameters of the problem.
For the random times of the works execution the algorithm
ANE. Is much more stable. All computations were performed in
less than one hour.

7. Case study

The investment project concerns the realization of a complex
of twelve residential buildings (n = 12). The projects of the
buildings are characterized by a similar set of construction
works forming an orderly nine-element (m = 9) sequence of
works beginning with earthworks and with finishing works
ending. Based on the (National) Contractors Estimator (KNR,
[12]) there were times (matrix p) of works execution estimated
(in working days), Table 3. The KNR is a normative document
containing individual material inputs of labor, materials and
equipment necessary to create a cost estimate in the
investment documentation.

Graphical representations of sample schedules are pre-
sented in Figs. 3 and 4. The numbers next to the points
represent the moments (times) of completing the operation in
the deterministic version of the problem under consideration.
Two classical approaches to the jobs starting times were
considered: to have minimal idle times between the same kind
of works on objects (Fig. 3) and to have minimal idle times
Work's
number

Object's number

1 2 3 4 5 6 7 8 9 10 11 12

1 7 8 7 7 7 8 7 7 6 7 5 4
2 8 11 8 9 9 11 8 9 8 9 8 8
3 8 11 10 9 9 11 10 9 11 9 9 9
4 7 8 7 7 8 8 7 7 8 8 8 7
5 6 7 7 7 7 7 7 7 7 7 8 15
6 11 14 11 13 13 14 11 13 14 13 14 8
7 9 14 9 11 10 13 9 11 8 10 11 9
8 4 8 6 7 5 7 7 8 9 9 9 5
9 6 9 5 9 7 5 8 9 8 7 7 7



Fig. 3 – Case study schedule with minimal idle time between objects.

Fig. 4 – Case study schedule with minimal idle time between processes.

Fig. 5 – Case study schedule with minimal idle time between processes with critical path marked by red boxes.
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between processes (Fig. 4), with the same permutation
(solution) as objects order.

Fig. 3 presents an approach with a minimum wait time
between works on objects. This means that after completing work
on the site, Process will wait as soon as possible to start work on
the next facility. In practice, this means delaying the commence-
ment of works so as to minimize demigration of the brigades
between objects. It is visible in Fig. 3 in the form of horizontal lines
representing the waiting for the commencement of works on the
site and after completion of works on the previous facility.
Figs. 4 and 5 present the schedule of works with continuous
processes (i.e., works of construction brigades). Minimizing
downtime de facto means here a glazed time of downtime,
because the moments when commencing works on objects are
delayed so as to obtain continuity of works for brigades (i.e.,
processes). The form of the critical path shown in Fig. 5 for this
model is interesting. The start and end moments of works
belonging to the critical path are placed in red rectangles. It can
be noticed otherwise than for the classical pipeline system
(where the trick passes ‘‘right’’ or ‘‘down’’), the critical path
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may ‘‘return’’ to previous processes, wandering somehow
‘‘upwards’’. This fact complicates the process of determining
the critical path significantly and causes that classic algo-
rithms cannot be used directly.

As described at the beginning of Section 6.1 there were
moments of structures completion designated

d ¼ ð210; 162; 196; 247; 96; 159; 211; 107; 287; 231; 192; 115Þ
and the weight of the penalty function for exceeding the
completion time limits

w ¼ ð7; 2; 6; 9; 5; 3; 6; 8; 4; 7; 1; 4Þ:
Then, on the basis of the presented in Table 3 deterministic

times of execution of works ½pi;j�9�12
, there were uncertain data

(i.e. the uncertain times of execution of works) determined:

1. fuzzy (Table 4), bpi;j are represented by a triple ðpai;j; pbi;j; pci;jÞ,
2. probabilistic:


 normal distribution ~pi;j 	 Nðpi;j; 0; 2�pi;jÞ; i ¼ 1; 2; . . .; 9,
j = 1, 2, . . ., 12,


 Erlang distribution ~pi;j 	 Eðpi;j; 1Þ; i = 1, 2, . . ., 9, j = 1, 2, . . .,
12 .

There were computations performed for particular algo-
rithms, for deterministic algorithms and with uncertain data and
the following results (penalties for delays in the implementation
of structures) FðADÞ ¼ 1626, FðAFÞ ¼ 1708, FðANEÞ ¼ 1708,
FðAEEÞ ¼ 1782, FðANEþDÞ ¼ 1704, FðAEEþDÞ ¼ 1782. Similarly, as
in the case of the described in Section 6.2 computational
experiments the best solution was determined by the determin-
istic algorithm AD. In this case, the penalty for tardiness is 1626.
The worst appeared to be the solution determined by the
algorithm AEEþD.
Table 4 – Fuzzy times of works execution of builded
objects.

1 2 3 4 5 6

Object's number
(5,7,11) (6,8,12) (5,7,11) (5,7,11) (5,7,11) (6,8,12)
(6,8,12) (8,11,17) (6,8,12) (6,9,14) (6,9,14) (8,11,17)
(6,8,12) (8,11,17) (7,10,15) (6,9,14) (6,9,14) (8,11,17)
(5,7,11) (6,8,12) (5,7,11) (5,7,11) (6,8,12) (6,8,12)
(4,6,9) (5,7,11) (5,7,11) (5,7,11) (5,7,11) (5,7,11)
(8,11,17) (10,14,21) (8,11,17) (8,13,20) (8,13,20) (10,14,21)
(6,9,14) (10,14,21) (6,9,14) (8,11,17) (7,10,15) (8,13,20)
(3,4,6) (6,8,12) (4,6,9) (5,7,11) (4,5,8) (5,7,11)
(4,6,9) (6,9,14) (4,5,8) (6,9,14) (5,7,11) (4,5,8)

7 8 9 10 11 12

Object's number
(5,7,11) (5,7,11) (4,6,9) (5,7,11) (4,5,8) (3,4,6)
(6,8,12) (6,9,14) (6,8,12) (6,9,14) (6,8,12) (6,8,12)
(7,10,15) (6,9,14) (8,11,17) (6,9,14) (6,9,14) (6,9,14)
(5,7,11) (5,7,11) (6,8,12) (6,8,12) (6,8,12) (5,7,11)
(5,7,11) (5,7,11) (5,7,11) (5,7,11) (6,8,12) (10,15,23)
(8,11,17) (8,13,20) (10,14,21) (8,13,20) (10,14,21) (6,8,12)
(6,9,14) (8,11,17) (6,8,12) (7,10,15) (8,11,17) (6,9,14)
(5,7,11) (6,8,12) (6,9,14) (6,9,14) (6,9,14) (4,5,8)
(6,8,12) (6,9,14) (6,8,12) (5,7,11) (5,7,11) (5,7,11)
Immunity to perturbances of data, designated by the
individual algorithms solutions was tested as follows. There
were drawn (in accordance with the uniform distribution) 6 out
of 12 objects. For each of the object there was a random
selection (uniform distribution in the interval [5;25]) the
number p and the execution time of each work on this object
was increased by p%. For the disturbed data, penalties for
tardiness in execution of the structures are respectively:
FðADÞ ¼ 1894; FðAFÞ ¼ 1856; FðANEÞ ¼ 1810; FðAEEÞ ¼ 1907;
FðANEþDÞ ¼ 1863; FðAEEþDÞ ¼ 2017: In this case, the minimum
penalty is a solution of an algorithm AN, since FðANEÞ ¼ 1810:
The biggest increase, from 1626 to 1894, was noted in the cost
of the solution determined by the deterministic algorithm AD:
This fact confirms the thesis that the deterministic algorithms
solutions are the best, but unfortunately very susceptible to
disturbance of the data.

An example from the practice was presented above, on
which the methodology of constructing the input data of the
algorithm was demonstrated, i.e. the duration of the operation
was blurred. However, the main result of the work is not a case
study that only demonstrates the technology we propose, but a
new innovative methodology for the construction of fault
tolerant schedules by using algorithms based on a probabilistic
model.

8. Comments and conclusions

The work presents the sum-cost construction scheduling
problem with uncertain data represented by fuzzy numbers
and random variables with normal or the Erlang distribution.
These distributions described well the natural randomness
with which we deal mostly in management practice. The new
finding proposed in the work consists in introduce the new
method of constructing schedules resistant to data distur-
bances assuming normal or Erlang distributions of uncertain
operations durations. To solve the problems there was the
algorithm used, whose design was based on the tabu search
method. There were experiments conducted to investigate the
computational stability of algorithms, i.e. the influence of
disturbance parameters of the problem on the change of the
value of the optimized criterion. The obtained results clearly
show that the most stable is a probabilistic algorithm with
times of works execution represented by random variables
with normal distribution. The use of probability elements in
adapting of tabu search methods can effectively solve large
examples of uncertain data for many difficult practical
optimization problems. Similar conclusions, resulting from
studies concerning single-machine task scheduling problem
with desired moments of tasks completion, are included in the
work Bożejko et al. [4].
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