
Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

Parallel tabu search for the cyclic job shop scheduling problem

Wojciech Bożejkoa,⁎, Andrzej Gnatowskia, Jarosław Pemperaa, Mieczysław Wodeckib

a Department of Automatics, Mechatronics and Control Systems, Faculty of Electronics, Wrocław University of Technology, Janiszewskiego 11-17, 50-372 Wrocław,
Poland
b Telecommunications and Teleinformatics Department, Faculty of Electronics, Wrocław University of Technology, Janiszewskiego 11-17, 50-372 Wrocław, Poland

A R T I C L E I N F O

Keywords:
Job shop problem
Cyclic scheduling
Tabu search
Parallel algorithm

A B S T R A C T

In this paper, we consider a cyclic job shop problem, consisting of production of a certain set of elements at fixed
intervals. Optimization of the process is reduced to a minimization of a cycle time, i.e. the time, after which the
next batch of the same elements may be produced. We introduce a new parallel method for the cost function
calculation. The parallelization is not trivial and cannot be done automatically by the existing compilers due to
the recurrent character of formulas. Since the problem is strongly NP-hard, a heuristic algorithm was designed to
solve it. Computational experiments were done in a multiprocessor environment, namely – in Intel Xeon Phi.

1. Introduction

Contemporary production systems executing multi-assortment pro-
duction or production in large quantities, with constant or slowly
changing range of products, manufacture items exclusively in a cyclic
manner. For a fixed batch of jobs (products) in the cycle, optimization
of such a system usually boils down to the cycle time minimization,
resulting not only in an increased system capacity, but also in an im-
proved machine utilization. A large part of this type of systems can be
classified as production models performing jobs on production slots,
which correspond to the job shop task scheduling problem. In the paper
we present the cyclic scheduling problem where the set of jobs is re-
peatedly processed by the machine, in the same order in each cycle.
Described in this way, the job shop scheduling problem belongs to a
wider group of cyclic optimization problems, which are recently a
subject of growing interest among both: theorists and practitioners
(Brucker & Kampmeyer, 2005; Brucker & Kampmeyer, 2008a; Bożejko,
Gnatowski, Niżyński, &Wodecki, 2016; Bożejko, Gnatowski,
Idzikowski, &Wodecki, 2017).

In this paper there is considered a solution to a cyclic job shop
problem of task scheduling through the use of tabu search algorithm in
the coprocessor environment, namely – Intel Xeon Phi coprocessor. The
process of neighborhood search and the calculation of the value of the
objective function were subjected to parallelization. The impact of the
used strategy on neighborhood generation, as well as the number of
used threads in achieved speedup, were examined. There are also new
theoretical properties established enabling the effective determining of
the cycle time, which, as it turns out, is a rational number at integral
values of the times of operations execution.

In the literature, especially in the latest publications, there is a
number of papers addressing cyclic scheduling problems in a variety of
industrial applications: (Hitz, 1980; Méndez, Cerdá, Grossmann,
Harjunkoski, & Fahl, 2006; Pinedo, 2008, 2009; Pinto, Barbosa-
Póvoa, & Novais, 2005; Trautmann & Schwindt, 2009), in communica-
tion, transport and logistics (Burke, De Causmaecker, Berghe, & Van
Landeghem, 2004; Gertsbakh & Serafini, 1991; Kubiak, 2005), as well
as in a field of multiprocessor computing (Kats & Levner, 2003). In
modeling and optimization of flexible manufacturing systems (FMS)
with a cyclic production, there are also Petri nets used (Lee & Korbaa,
2004). Lee and Posner (1997) considered a special case of the cyclic job
shop problem, in which the order of operations on the machines is
fixed. On the other hand, an open shop problem, describing the use of
the graph coloring device was considered by Kubale and Nadolski
(2005). A branch and bound algorithm based on a partial selections
construction is proposed in Hanen (1994). Properties of the cyclic job
shop are presented in Hanen and Munier (1995). For the special case of
the problem, where each job has at most two operations, Hall, Lee, and
Posner (2002) propose polynomial time algorithms. Lee and Posner
(1997) investigate an application of a disjunctive graph model as a
solution representation for the cyclic job shop problem. Jalilvand-Nejad
and Fattahi (2015) propose a mixed integer linear programming (MILP)
model for small size instances of a flexible cyclic job shop problem. The
authors describe the usage of two metaheuristics: a genetic algorithm
and simulated annealing for solving real size problems. Brucker and
Kampmeyer (2008a) consider the cyclic job shop problem with
blocking. Operations are blocked on a machine if the next machine is
still working (in the literature this constraint is also known as no-store).
The authors apply the tabu search algorithm to solve the problem. The

http://dx.doi.org/10.1016/j.cie.2017.09.042
Received 16 March 2017; Received in revised form 23 September 2017; Accepted 25 September 2017

⁎ Corresponding author.

Computers & Industrial Engineering 113 (2017) 512–524

Available online 28 September 2017
0360-8352/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
http://dx.doi.org/10.1016/j.cie.2017.09.042
http://dx.doi.org/10.1016/j.cie.2017.09.042
http://dx.doi.org/10.1016/j.cie.2017.09.042
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2017.09.042&domain=pdf

subject of metaheuristics in cyclic job scheduling is presented in
Brucker and Kampmeyer (2005) and Bożejko, Uchroński, and Wodecki
(2016). A job shop problem was also solved by parallel programming in
Bożejko (2012), where the method of parallel objective function cal-
culation was proposed. The paper Bożejko, Uchroński et al. (2016)
concerns using Intel Xeon Phi coprocessor to execute a parallel tabu
search and a simulated annealing for the cyclic flow shop – a special
case of the cyclic job shop problem.

2. Problem definition

The researched problem is equivalent to a variant of the cyclic job
shop with machine chain repetition, described in the work of Brucker and
Kampmeyer (2008b). However, we consider a different mathematical
model of problem, with multiple new properties proven.

2.1. Mathematical model

Formally, the problem can be defined as follows: there is a manu-
facturing system considered which consists of m machines (with a unit
capacity), constituting a set M = …c m{1,2, , }. There are n jobs in the
system, given by a set N = …c n{1,2, , }, that should be performed cycli-
cally (in a repetitive manner). The j-th job requires a sequence of nj
operations to be performed. Operations are indexed by successive nat-
ural numbers: + + … +− − −l l l n1, 2, ,j j j j1 1 1 , where lj is the total number of
operations in the first j jobs:

= ⎧
⎨⎩

∑ = …
=

=l n j n
j

for 1,2, , ,
0 for 0.

j i
j

i1

(1)

The operations must be performed in a predefined, technological
order + → + → ⋯ → +− − −l l l n1 2j j j j1 1 1 . A set O = … o{1,2, , }, where
= ∑=o ni

n
i1 is the number of operations, contains operations from all

the jobs. Each operation O∈i , must be performed uninterruptibly on a
machine M∈vi , in time >p 0i . The set of operations O can be, in a
natural manner, decomposed into m subsets. A subset
O O= ∈ =j v k{ : }k j corresponds to operations performed on the ma-
chine M∈k , O=m | |k k is the number of operations performed on this
machine. Let Πk be the set of all possible permutations of elements from
Ok. The order in which operations are performed on the machine k is
described by a tuple = … ∈π π π π m((1), (2), , ()) Πk k k k k k; where π i()k de-
notes the operation performed on the machine k after −i 1 other op-
erations, i.e. the operation π (1)k is performed as a first, then the op-
eration π (2)k , etc. The order of execution of all operations is defined as
m-short = … ∈ = × × ⋯ ×π π π π(, , ,) Π Π Π Πm m1 2 1 2 .

A set of jobs in a single cycle is called MPS (Minimal Part Set). MPSs
are processed one after another in a cyclic manner, every cycle time T,
i.e. each operation is repeated every T time. The schedule of x-th MPS is
described by two vectors

= …S S S S(, , ,),x x x
o
x

1 2 (2)

= …C C C C(, , ,),x x x
o
x

1 1 (3)

where Sj
x and Cj

x denote respectively the moment of start and comple-
tion of the operation j in x-th MPS. The feasible schedule must satisfy
the following constraints:

(a) each machine can perform at most one operation in each unit of
time;

(b) each operation can be performed only by one, determined by the
production process, machine;

(c) the technological order must be preserved;
(d) performance of operations cannot be interrupted;
(e) each operation is performed every T time;
(f) within each machine, operations from +x 1-th MPS can start only

after all operations performed on the machine from x-th MPS are
finished.

From the constraint (d), it is possible to represent the schedule of x-
th MPS by a single vector Sx (or Cx). The constraints can be formally
defined as

+ ⩽ = + … ++ −S p S i l l n, 1, , ,i
x

i i
x

j j j1 1 (4)

= …
+ ⩽ = … −+

j n
S p S i m

1,2, , ,
, 1,2, , 1π i

x
π i π i

x
k() () (1)k k k (5)

= …
⩾ = …

k m
S i o

1,2, , ,
0, 1,2, , ,i

x (6)

= + = …C S p i o, 1,2, , ,i
x

i
x

i (7)

+ = = …+S T S i o, 1,2, , ,i
x

i
x 1 (8)

+ ⩽ = …+S p S k m, 1,2, , ,π m
x

π m π
x

() () (1)
1

k k k k k (9)

where = …x 1,2, is the number of MPS, and T is the cycle time. The
constraint from (5) results from the sequential nature of the machine
work, whereas (4) is a result of the technological order in which op-
erations are preformed within the jobs. The constraint (6) is obvious.
The constraint from (8) imposes the periodicity of operations perfor-
mance; and (7) – that the performance of operations cannot be inter-
rupted. The constraint from (9) ensures that the MPSs are disjunctive,
as described in the constraint (f).

The problem boils down to finding a schedule which minimizes the cycle
time and satisfying constraints (4)–(9).

A relaxation of the constraint (9) leads to the problem with no
constraints (NC) for interlacing operations from different MPSs. The
cycle time of the optimal solution for the NC problem is also a lower
bound for the cycle time of the problem considered in this paper.

Property 1. The NC problem is solvable in polynomial time. The cycle time
of the optimal solution TNC equals

M
O

∑=
∈ ∈

T pmax { }.NC
k i

i
k (10)

Proof. Assume that ∈π Π is an arbitrary order of execution and TNC is
the cycle time calculated from (10). It can be easily shown, that the
schedule Sx , Cx

∑= − + + = … = …
=

−

S T γ i x p k m i n(() 1) , for 1,2, , 1,2, , ,π i
x

NC
j

i

π j k()
1

1

()k k

(11)

= + = …C S p i o, for 1,2, , ,i
x

i
x

i (12)

where γ i() is the position of the operation i in the job j:

= + ∈ + + … +− − − −i l γ i i l l l n(), for (1, 2, ,)j j j j j1 1 1 1 (13)

and = …x 1,2, is a number of MPS, is feasible. □

Example 1. In Table 1, an instance of the cyclic job shop scheduling
problem with two jobs is given. The first job consists of three operations
with the processing order: → →1 2 3 and the second one consists of
two operations: →4 5. Assuming that there are no constraints put on
MPSs interlacing, the cycle time of an optimal solution can be
calculated from (10), =T 3NC . The feasible schedule for the first MPS,
obtained from (11) and (12) is shown in Table 2.

For the purpose of visualizing the idea behind (11) and (12), a
graphic presentation how the schedule is build is shown in Fig. 1. First,

Table 1
The cyclic job shop scheduling problem instance from Example 1.

Operation (i) 1 2 3 4 5
Processing time (pi) 1 3 1 2 2
Machine (vi) 1 2 3 3 1
Technological pred. – 1 2 – 4

W. Bożejko et al. Computers & Industrial Engineering 113 (2017) 512–524

513

starting from 0, the timeline is divided into an infinite number of time
windows, each of the width of TNC. Afterwards, operations from the
MPS are sequentially added to the diagram, aligned to the left to 0 – or
to the end of the previous operation. The order in which operations are
added is insignificant, and is determined by the arbitrarily taken
=π ((1,5),(2),(3,4)). The obtained schedule is then copied into each time

window. In order to build a schedule for the first MPS (marked with
bold lines), for each job, each operation in the technological order is
chosen from a different, consecutive time window. Here, job 1 consists
of three operations: → →1 2 3. Therefore, the operation 1 is taken from
the first time window (=S 01

1), 2 from the second one (=S 32
1) and 3

from the third one (=S 63
1). Finally, the same procedure is applied to

the second job.

Definition 1. For a given order of execution of π , the minimal cycle
time T π() is the lowest value of the cycle time T, for which π is still
feasible, i.e. there is at least one schedule = …S x, 1,2,x , that complies
with constraints (4)–(9). If such a cycle time does not exist, = ∞T π() .

Assuming that, for a given π , the method of finding a schedule with
the cycle time T π() is known, the problem can be reformulated to
finding ∈∗π Π which minimizes the minimal cycle time T π()

∈∗
∈

π T πargmin { ()}.
π Π (14)

Such a method is presented in Section 3.

2.2. Comparison to other problems

In the proposed model, despite disjunctive MPSs, there is ’interla-
cing’ of operations possible in successive MPSs, i.e. it is possible for
operations from the x + 1-th MPS to be executed before the completion
of certain operations from the x-th MPS. The ’interlaces’ may be pro-
hibited without guarantying disjunctive MPSs by adding specific re-
straints to the model.

Such an approach is taken in Hanen and Munier (1995) and Brucker
and Kampmeyer (2005), where the constraints are modeled by a di-
rected graph G. The set of nodes consists of operations fromO and two
additional dummy nodes: ∘ and ∗ (with no processing time). The arcs
represent constraints of the problem and are weighted by two functions:
L, called length and H, called height. In the model, length L of an arc
from a node i (representing operation O∈i) equals pi. The height, on
the other hand, equals zero, with an exception of ∗∘H (and the dis-
junctive arcs representing the order in which operations are performed
on the machines). The sum of lengths in a given cycle μ in G is denoted
by L μ(), and the sum of heights by H μ(). The cycle time equals to the
highest value of =V μ() L μ

H μ
()
() among the cycles in G. The cycle with the

highest value is called the critical circuit. In the model, when =∗∘H 1,

all the operations O∈i from the x-th MPS must be finished before
starting the operations from the +x 1-th MPS:

⩽ = … = …+C S i j o x, , 1, , , 1,2, .i
x

j
x 1

(15)

Such a constraint leads to the problem equivalent to the well-re-
searched job shop scheduling problem with a makespan minimization.
In general, for =∗∘H a, operations from a different MPSs can be
scheduled in the same time window. Therefore, usually the larger the
value of ∗∘H is, the shorter the cycle times can be achieved, as more
schedules become feasible (Brucker & Kampmeyer, 2005) and the value
of the critical circuit may be lowered (H is inversely proportional to V).
When ∗∘H approaches infinity, the constraint on MPSs ‘interlacing’ is
relaxed and the problem can be solved in polynomial time (as shown in
Property 1).

While ∗∘H is a versatile tool in defining various cyclic scheduling
problems, it cannot express the constraint (9). Hence, the mathematical
model described in this paper (and thereby the problem) is different
from the cyclic job shop scheduling problem researched in Kampmeyer
(2006) and Kechadi, Low, and Goncalves (2013). However, it is possible
to describe our problem using the concept of height, as it was shown in
Brucker and Kampmeyer (2008b), where cyclic job shop with machine
chain repetition is discussed.

Example 2. Let us consider the instance of the problem from the
Example 1. For the constraints introduced in this paper, the optimal
schedule with the cycle time =T 4.5 and the order of execution
=π ((1,5),(2),(4,3)) is shown in Fig. 2a. For the problem with the hight

constraints and =∗∘H 1, the optimal schedule with the cycle time =T 5
and the order of execution =π ((1,5),(2),(4,3)) is shown in Fig. 2b. For
the problem without constraints on MPSs interlacing (or for ∗∘H
approaching infinity), the optimal schedule with the cycle time =T 3
and =π ((1,5),(2),(3,4)) is shown in Fig. 2c. Despite the same value of
the cycle time, the schedule is different from the one presented in Fig. 1.

3. Graph model

Let graphs H π() and G π() be defined in the following manner
(based on Nowicki & Smutnicki, 1996):

O R E= ∪G π π() (, ()), (16)

O R E E= ∪ ∪ ∗H π π π() (, () ()), (17)

where O is the set of vertices and R E π, () and E ∗ π() are sets of arcs

R = ∪ ∪ += = +
−

− i i{(, 1)},j
n

i l
l

1 1
1
j

j
1 (18)

E = ∪ ∪ += =
−π π i π i() {((), (1))},k

m
i
m

k k1 1
1k (19)

E = ∪∗
=π π m π() {((), (1))}.k

m
k k k1 (20)

The arcs representing the technological order are denoted by R , the
arcs representing the order in which operations are performed on the
machines (the machine order) by E π(), whereas the arcs from the set
E ∗ π() – the cyclic precedence constraint

+ − ⩽ = …S p T S k m() , 1, , .π m π m π() () (1)k k k k k (21)

Table 2
The schedule from Example 1.

Operation (i) 1 2 3 4 5
Position in job (γ i()) 1 2 3 1 2

Operation start (Si
1) 0 3 6 1 4

Operation end (Ci
1) 1 6 7 3 6

Fig. 1. Schedule from Example 1. First MPS is marked with bold lines.

W. Bożejko et al. Computers & Industrial Engineering 113 (2017) 512–524

514

Each arc R E∈ ∪i j π(,) () is loaded with weight pi, whereas the arcs
E∈ ∗i j π(,) () have weight −p Ti .

Example 3. Let us consider the problem instance from the Example 1
and the optimal execution order =π ((1,5),(2),(4,3)). The corresponding
graphs G π() and H π() are shown in Fig. 3.

In the further part of the paper, several properties of the graphs
G π() and H π() related to the feasibility of solutions they represent are
shown. The properties will be then used to calculate the minimal cycle
time during neighborhoods generation and also as an elimination
technique in the parallel tabu search algorithm (as block property).

Property 2. An order of execution π is feasible if and only if the graphG π()
does not contain a cycle.

Property 3. For a feasible order of execution π , a feasible cyclic schedule

with the cycle time T exists if and only if the graph H π() does not contain a
cycle with a positive weight. In this case, we say that π is feasible for the
cycle time T.

In order to introduce further properties, several new symbols and
functions are defined firstly. Let = …μ μ μ μ s((1), (2), , ()) be a cycle in the
graph H π(), consisting of arcs from a multiset

= ⋃ + ∪
=

−
A μ μ i μ i μ s μ() {((), (1))} {((), (1))},

i i

s 1

(22)

and C H π(()) be the set of all possible cycles in the graph H π(). A set
′ ⊂C H π C H π(()) (()) is the set of cycles with unique arcs

′ = ∈ ∀ +

≠ + ∧ + ≠

∈ … − ≠C H π μ C H π μ i μ i

μ j μ j μ i μ i μ μ μ

(()) { (()): (((), (1))

((), (1)) ((), (1)) ((| |), (1)))}.

i j μ i j, {1, ,| | 1}:

(23)

For a given cycle time T and a cycle C∈μ H π(()), the sum of arcs
weights in the cycle (in short – weight of the cycle) can be expressed by
the equation:

K∑= −
∈

L T p T() ·| |,μ
i μ

μ i μ()
(24)

K E= ∈ ∈ ∗i j A μ i j π{(,) (): (,) ()},μ (25)

where Kμ is the multiset of the cycle arcs in the cycle μ. Finally, let
L T π(,) denote, for a given cycle time T, the highest weight of the cycle
from the graph H π()

C
=

∈
L T π L T(,) max { ()}.

μ H π
μ

(()) (26)

Property 4. For a given feasible π and the cycle time ∈ +∞T T π[(),) the
function L T π(,) of a T variable is continuous and strictly decreasing.

Proof. For <T T π(), from Definition 1, the order of execution π is not
feasible. From Property 3

< = ∞ ⇔ <L T π T T π0 (,) (), (27)

and therefore

Fig. 2. Optimal schedules for the problem instance from Example 2 and different constraints.

Fig. 3. Graphs G π() and H π() from the Example 2. The technological arcs from the setR
are denoted with solid lines, the machine arcs from the setE π() with dashed lines and the
cyclic arcs from the set E∗ π() with dotted lines.

W. Bożejko et al. Computers & Industrial Engineering 113 (2017) 512–524

515

⩽ ⇔ ⩾L T π T T π(,) 0 (). (28)

From Eq. (28), for ⩾T T π(), we have ∀ ∈ ⩽μ C H π L T(()) (() 0)μ and
from Eq. (27), for C< ∃ ∈ = +∞T T π μ H π L T() , (()) (())μ . Function
L T()μ is strictly decreasing and continuous, therefore L T π(,) as defined
in Eq. (26) is also strictly decreasing and continuous for
∈ +∞T T π[(),). □

Property 5. For a given feasible order of execution π , the weight of the
cycles with the highest weights in the graph H π() equals to 0 if and only if
the cycle time is minimal:

= ⇔ =L T π T T π(,) 0 (). (29)

Proof. From Eqs. (24) and (26) it is obvious that:
= ⇒ =T T π L T π() (,) 0. Function L T π(,) is strictly monotonic for
>T T π() (Prop. 4), therefore: = ⇔ =L T π T T π(,) 0 ().

Property 6. For a feasible order of execution π and the cycle time
=T T π(), there is at least one cycle ∗μ in the graph H π(), consisting of

the unique arcs only, that satisfies the condition =∗L T() 0μ .

Proof. For =T T π(), let us consider the cycle with the highest weight
comprising the repeating arcs: ∈ ⧹ ′μ C H π C H π(()) (())p . Then

∃ + = + ∨ +

=

∈ … − ≠ μ i μ i μ j μ j μ i μ i

μ μ μ

((), (1)) ((), (1)) ((), (1))

((| |), (1)),

i j μ i j p p p p p p

p p p

, {1, ,| | 1}:p

(30)

where +μ i μ i((), (1))p p are the repeated arcs. It is possible to construct a
subcycle μsub of μp, defined as = + … −μ μ i μ i μ j((), (1), , (1))sub p p p or

= + … −μ μ i μ i μ μ((), (1), , (| | 1))sub p p p p . If the designated subcycle
∉ ′μ C H π(())sub , then the following subcycles are being build until
∈ ′μ C H π(())sub . Without a loss of generality, it is possible to assume

that ∈ ′μ C H π(())sub . Hereby the following cases should be taken into
consideration:

(1) >L 0μsub – contradiction, the Property 3 is not fulfilled.
(2) =L 0μsub – from the Property 5, the subcycle μsub is one of the cycles

of the highest weight.
(3) <L 0μsub – contradiction, the cycle μ i()p , whose subcycle is μsub, is

not the cycle of the highest weight. It is possible to design the cycle
of the highest weight by removing the arcs of the subcycle μsub from
the cycle μ i()p , at the same time creating the cycle μsub with the
weight of  = −L L L μ()μ μ i sub()sub p in the following way:

 = … + …μ μ μ μ i μ j μ s((1), (2), , (), (1), , ()).sub p p p p p p (31)

Only in case of (2) there is no contradiction. Therefore, when
=T T π(), there are infinitely many cycles with the highest weight

equal to 0 and at least one of them belongs to the set ′C H π(()). □

Property 7. For the cyclic job shop scheduling problem with operations
processing times expressed by the natural numbers O ∀ ∈ ∈ ⧹i p({0})i
and a feasible order of execution π , the minimal cycle time is a rational
number satisfying the condition

= ∈ ⧹ ⩽ ⩽T π a
b

a b b m() , , {0}, 1 .

Proof. Let ∗μ be the shortest cycle with the highest weight in the graph
H π() (the length is defined as the number of the arcs that make up the
cycle). From Property 6, for the cycle time =T T π() we have:

=∗L T() 0.μ (32)

By substituting (32) into (24), we obtain:

K∑= − =
∈

∗

∗

∗L T p T() ·| | 0.μ
i μ

i μ
(33)

Thus, after transformations

K
=

∑
=∈ ∗

∗
T

p a
b| |

,i μ i

μ (34)

where

K E∑= ⩽ = ⩽ =
∈

∗

∗

∗a p b π m, 1 | | | ()| .
i μ

i μ
(35)

Since ∀ ∈ ∈∗i μ p()i , therefore ∈a . □

In order to determine the value of the minimal cycle time, there will
be a graph required which is a m-fold duplication of the graph G π(),
taking into account the arcs modeling the cyclic constraints linking
individual “copies” of the graph. Hence, the graph H π()m() was defined
as follows:

O O R E E⎜ ⎟= ⎛
⎝
⋃ ∪ ′ ⋃ ∪ ∪ ⎞

⎠= =

∗H π π π() { } , { () ()} ,m

x

m
x

x

m
x x x()

1

()

1

() () ()

(36)

whereO x() andO′ are the sets of vertices, whereasR x(),E π()x() ,E ∗ π()x()

are the sets of arcs. A vertex O∈j x x() () corresponds to Sj
x – the start of

execution of the operation j in the x-th MPS. The set of vertices O′
models the first operations of the +m 1-th MPS and ”end” moment of
the m-fold duplication of the graph G π()

O′ = ⋃
=

+π{ (1)}.
k

m

k
m

1

(1)

(37)

The arcs i j(,)x x() () from the sets R x() and E π()x() have weight pi and
represent precedence: the technological (inequality (4)) and the ma-
chine (inequality (5)) constraints in x-th MPS

R = ⋃ ⋃ +
= = +

−

−

i i{(,(1))},x

j

n

i l

l
x x()

1 1

1
() ()

j

j

1 (38)

E = ⋃ ⋃ +
= =

−
π π i π i() {((), (1))}.x

k

m

i

m

k
x

k
x()

1 1

1
() ()

k

(39)

The arcs i j(,)x y() () from the set E = …∗ π x m(), 0,1, ,x() represent the cyclic
constraints between x-th and +x 1-th MPS

E = ⋃∗

=

+π π m π() {((), (1))}x

k

m

k
x

k k
x()

1

() (1)

(40)

and have weight equal to −p Ti .
Let μ i j(,)x y() () denote the path with the highest weight between the

vertices i x() and j y(). The weight of the path μ i j(,)x y() () is

∑= − −
∈

L p T y x().μ i j
k μ i j

k(,)
(,)

x y
x y

() ()
() () (41)

It is obvious that:

C C

⋃ = ⋃
∈ ∈ ′

L T π L T π{ (())} { (())},
μ H π

μ
μ H π

μ
(()) (())m m (42)

C
M

= ⋃ ⋃
∈ =

H π μ π π(()) { ((1), (1))}.m m

i y

m

i i
y

2

(1) ()

(43)

From Property 6, the shortest cycle ∗μ that satisfies the condition
=∗L T π(()) 0μ is included in the set C ′ H π(()). Therefore, the task of

determining the cycle ∗μ in the graph H π() is equivalent to the problem
of determining the shortest path with the largest weight from the set
C H π(())m m .

Let us consider the value of the minimal cycle time for which the
path μ i j(,)x y() () in the graph H π()m has a weight less than or equal to
zero (which corresponds to a cycle with non-positive weight in the
graph H π())

=
∑

−
∈T

p

y x
.

μ i j
min k μ i j k

(,)
(,)

x y

x y

() ()

() ()

(44)

Knowing Tμ
min value for every path μ from the set C H π(())m m , it is

possible to calculate the minimal cycle time

W. Bożejko et al. Computers & Industrial Engineering 113 (2017) 512–524

516

C M
= =

⎧
⎨
⎩

⎧
⎨
⎩

∑

−
⎫
⎬
⎭

⎫
⎬
⎭

∈ ∈ = …

∈
T π T

p

y
() max { } max max

1
.

μ H π
μ
min

i y m

k μ π π k

(()) 2, ,

((1), (1))

m m
i i

y(1) ()

(45)

In the further part of the paper, a complexity analysis of the ob-
jective function of determination algorithms for their implementations
for the Parallel Random Access Machine (PRAM model) is done (see
Cormen, Leiserson, Rivest, & Stein, 1990). PRAM consists of many co-
operating processors – RAM machines, usually used in theoretical
computer science in algorithms complexity analysis. Each processor can
make local calculations – additions, subtractions, shifts, conditional and
unconditional jumps and indirect addressing. All the processors are
synchronized and have access to a shared global memory (uniformly
accessible from any processor) in a constant time O (1). CREW (Con-
current Read Exclusive Write) is a type of PRAM, where multiple pro-
cessors can read from the same memory cell concurrently, but only a
single processor can write the cell at the same time. This model re-
sembles, for example, the GPU programming model and therefore is
used in this paper to analyze the algorithms.

Theorem 1. The value of the minimal cycle time in the cyclic job shop
scheduling problem can be determined in O mo() time, using O m()-processor
CREW PRAM.

Proof. In order to determine the cycles with the highest weights in the
graph H π(), the corresponding graph H π()m is considered. The
minimal cycle time T π() can be calculated using Eq. (45). The set
C H π(())m m can be decomposed into m disjoint subsets in such a
manner, that for each subset there is a different common first
operation in the path:

C C
M

= ⋃
∈

H π H π(()) { (())},m m

i
i
m m

(46)

C = ⋃
=

H π μ π π(()) { ((1), (1))}.i
m m

y

m

i i
y

2

(1) ()

(47)

Substituting (47) into (45) we have:

C
M

= ∈
∈

T π T μ H π() max{max{ : (())}}.
i

μ
min

i
m m

(48)

The value of C∈T μ H πmax{ : (())}μ
min

i
m m can be calculated using a

method based on a review of the graph nodes in the topological order.
This method has the sequential complexity O mo(). Therefore, obtaining
the value of T π() has the sequential complexity O m o()2 , resulting from
the fact that it is necessary to perform the procedure of revision of the
nodes in the topological order m times, each time starting from different
source – node representing execution of the first operation on the
machine. This procedure can be easily parallelized using m processors,
resulting in the parallel operation time O mo(). □

Example 4. Let us consider the cyclic job shop scheduling problem
instance defined in Example 2 and the order of execution
=π ((1,5),(2),(4,3)). The corresponding graph H π()m is shown in

Fig. 4a. In order to calculate T π(), the first weights of the paths from
the set C H π(())m m

1 are computed. In the topological order, the longest
paths from the node 1(1) to each other node are found as shown in
Fig. 4b. Three different paths are taken into consideration: μ (1 ,1)(1) (2) ,
μ (1 ,1)(1) (3) and μ (1 ,1)(1) (4) . For each path, Tmin is calculated. The path:

=μ (1 ,1) (1 ,2 ,3 ,4 ,5 ,1)(1) (3) (1) (1) (1) (2) (2) (3)

has the highest value of =T T, 4.5min
μ
min

(1 ,1)(1) (3) . Using the same method,

paths with the highest values of Tmin are found for the rest of possible
starting points – for the node 2(1):

= =μ T(2 ,2) (2 ,3 ,4 ,5 ,1 ,2), 4.5,
μ
min(1) (3) (1) (1) (2) (2) (3) (3)

(2 ,2)(1) (3)

and for the node 4(1):

= =μ T(4 ,4) (4 ,5 ,1 ,2 ,3 ,4), 4.5.
μ
min(1) (3) (2) (2) (3) (3) (3) (3)

(4 ,4)(1) (3)

Finally, = =T π() max{4.5,4.5,4.5} 4.5. Because =T T π()
μ
min

(1 ,1)(1) (3) , the

shortest cycle ∗μ that satisfies the condition =∗L T π(()) 0μ from H π()
is =∗μ (1,2,3,4,5).

Any cycle that meets constraints form Property 6 will be called a
critical cycle, whereas the elements of the cycle are called critical op-
erations. It is easy to see that the increase in the processing time of any
critical operation increases the cycle time (and the minimal cycle time).

Let μ be a critical cycle. Any subsequence = …B μ a c μ b((), , ())a b, of
the cycle μ consisting of the vertices from the connected arcs from the
set E π() will be called an operation block, operations μ a() and μ b() will
be called respectively the first and the last operation of the block Ba b, ,
whereas + … −μ a μ b(1), , (1) will be called internal operations of the
block Ba b, .

Property 8. If ∈α π, Π and <T α T π() (), then in the permutation α at
least one operation of at least one block from permutations π is executed
before the first or the last operation of the block.

Proof of the Property 8 is carried out in a manner analogous to the
proof of the block property for the job shop scheduling problem with
the makespan minimization criterion Cmax (see Nowicki & Smutnicki,
1996; Grabowski &Wodecki, 2005).

Property 9. If the permutation α was generated from π by changing the
order of execution of two neighboring operations in the critical cycle, then α
is a feasible permutation.

4. Tabu Search

Tabu Search (TS) was originally proposed by Glover and Laguna
(1997). TS is a modification of the local search method. To improve the
chance of reaching a global extreme, Glover and Laguna added the
possibility to increase the value of the objective function in consecutive
algorithm iterations. In order not only to avoid visiting the same so-
lution multiple times, but also to explore more promising regions of
search space and to enable the exit from the local extreme, there is a
tabu mechanism introduced. After generating a neighborhood, the so-
lutions that are forbidden by the tabu mechanism are not considered,
unless they meet the aspiration criteria, i.e. the conditions under which
the tabu constraints may be omitted.

4.1. Neighborhood

A neighborhood is a set of solutions (neighbors) created by a spe-
cific operator; a move is a function transforming a solution into one of
its neighbors. In this paper, a swap move is used, i.e. the move that
swaps positions of two given operations in the order of their execution.
The attributes of the move are described by an unordered pair of
swapped operations = =i j v v m{ , }, i j (on the same machine). In the al-
gorithm, the strategy of choosing the neighbor with the lowest value of
the objective function was adopted.

First, the neighborhood N1, generated by the operator proposed in
the work Nowicki and Smutnicki (1996), was considered. The results of
computational experiments prove its great effectiveness in the design of
the algorithms for solving the job shop scheduling problem with Cmax
criterion. The elements of the neighborhood are generated by swapping
(see Bożejko, Pempera, & Smutnicki, 2013) the first operation of each
block with the second operation of the block and the last operation of
each block with the penultimate operation. One can easily notice that
the generated solutions fulfill constraints from Properties 8 and 9.
Therefore, the received solutions are not only feasible but their minimal
cycle times are potentially lower. The experimental studies in Brucker
and Kampmeyer (2005) examined several neighborhoods. The de-
scribed neighborhood yielded the best results, hence it was decided to
use N1 as the neighborhood for the sequential algorithm implementa-
tion.

W. Bożejko et al. Computers & Industrial Engineering 113 (2017) 512–524

517

Since the parallel environment provides more computing power, a
larger neighborhood N2 was also defined. N2 extends the neighborhood
N1 by swapping each internal operation of the block, with the first and
the last operation of this block. With the larger size of neighborhood N2,
the likelihood of a situation when all the moves are forbidden by the
tabu list is reduced. However, some solutions obtained from the
neighborhood N2 do not fulfill conditions from Properties 9 and 8. The
process of generating the neighborhood of a solution π is summarized
in the Procedure 1.

Procedure 1. Neighborhood generation

Step
1.

Generate the graph H π().

Step
2.

Determine the critical cycle and blocks of operations.

Step
3.

Generate neighborhood N1 or N2 by swapping the operations
from the blocks.

4.2. Tabu mechanism

A tabu mechanism is implemented by using a tabu list (LT), which is
a short-term search history. LT stores the attributes of the moves which
were made. When the length of the list reaches the maximum fixed
value Lmax, before adding the next element, the oldest one is deleted.
When, in a given step, all the moves are forbidden by the tabu list, the
oldest elements are being deleted from the list, until at least one move is
allowed. In addition, the aspiration criterion is introduced: each move
that leads to the neighbor with the value of the objective function less
than the objective function of the current best solution is allowed, even

if it is forbidden by the tabu list.

4.3. Start procedure

In the paper, there are two different TS start procedures used. The
first one, later referred to as simple start procedure, is designed only to
provide a feasible solution. Therefore, the quality of the initial solution
is not taken into a consideration. The procedure is summarized in
Procedure 2.

Procedure 2. Simple start procedure

for = …i m1,2, , do
←π ()i

for = …j n1,2, , do
for = + + … +− − −i l l l n1, 2, ,j j j j1 1 1 do
append operation i to the end of πvi

The procedure starts with an empty order of execution π . Then,
each operation (from 1 to o) is being put at the end of πvi, so that
technological constraints are satisfied.

The second procedure is the TSAB algorithm proposed in Nowicki
and Smutnicki (1996). In order to obtain the initial solution, an in-
stance of the problem is treated as it were the job shop scheduling
problem instance.

5. Parallelization

The most time-consuming part of a single TS iteration is calculating
the value of the objective function for each neighbor. Therefore, this
part of the algorithm was chosen for parallelization. Three different

Fig. 4. Graphs for the Example 4. The technological arcs from the setsR x() are denoted with solid lines, the machine arcs from the setsE π()x() with dashed lines and the cyclic arcs from
the sets E ∗ π()x() with dotted lines.

W. Bożejko et al. Computers & Industrial Engineering 113 (2017) 512–524

518

approaches were considered: the parallel method of the objective
function calculation, the parallel evaluation of the neighbors and the
approach combining the two mentioned before. An outline of the TS
parallelization strategies is shown in Fig. 5.

5.1. Objective function parallelization (OF strategy)

The strategy is a direct implementation of the Theorem 1 and it is
shown in Fig. 5a. First, in a sequential manner, the neighbors are
generated and the topological orders are determined. Then, the feasible
neighbors are evaluated. For one neighbor at a time (in Fig. 5a –
neighbors = … −i N0,1, ,| | 1), the paths with the highest weights, starting
from m different nodes, are computed simultaneously. Hence, an upper
bound of the speedup can be expressed by the equation

=
⎡
⎢

⎤
⎥

UB p m m(,) .OF
m
p (49)

The theoretical speedup is therefore affected by the number of ma-
chines m and the number of processors p.

5.2. Neighborhood parallelization (N strategy)

The second strategy revolves around evaluating the neighbors si-
multaneously. In each iteration of the TS algorithm, a set of solutions
(neighbors) is generated. Then, for each neighbor at once, the value of
the objective function is computed sequentially; as shown in Fig. 5b.
For a neighbor, first the topological order is determined. If there are
cycles in the graph H π()m() , a neighbor is rejected. Next, paths with the

highest weights starting from m different nodes are found (in Fig. 5b –
paths = … −k m0,1, , 1). The minimal cycle time is finally obtained by
analyzing the weights of the paths. For obvious reasons, the speedup of
the parallel algorithm cannot exceed N π| ()|, with =p N π| ()| processors
used. Therefore, the upper bound of the speedup for this parallelization
strategy is

=
⎡
⎢

⎤
⎥

UB p π N π(,) | ()| .N
N π

p
| ()|

(50)

The degree of parallelization depends on the sizes of the generated
neighborhoods and therefore on: the neighborhood definition, the
problem instance, the order of execution π and the number of pro-
cessors p.

5.3. Mixed parallelization (OF + N strategy)

The last strategy combines both previously described approaches,
allowing for the highest theoretical speedups.

As shown in Fig. 5c, there are two parallel sections. In the first
Section (1), the topological orders of the graphs H π()m() for each
neighbor are simultaneously computed. Then, the neighbors with cycles
in graphs H π()m() are rejected. As a result, a set of feasible neighbors N f

is formed. In the second Section (2), the paths with the highest weights
are determined. There are m starting points for each neighbor, and
N π| ()|f neighbors. Since the calculations are independent, m N π| ()|f

paths are computed at once. Hence, the upper bound of the speedup is

Fig. 5. Overview of the algorithm parallelization strategies.

W. Bożejko et al. Computers & Industrial Engineering 113 (2017) 512–524

519

=
⎧

⎨
⎪

⎩⎪
⎡
⎢

⎤
⎥

⎡
⎢

⎤
⎥

⎫

⎬
⎪

⎭⎪
+UB p m π m m N π(, ,) max , | ()| .OF N

m
p

f

m N π
p

| ()|f

(51)

A pool of the path finding tasks (Section (2)), shared between neigh-
bors, is preferred over the nested parallelism (a straightforward com-
bination of N and OF strategies), due to the implementation reasons.
However, both approaches have the same theoretical performance.

5.4. Implementation

Due to hardware architecture on which the experiments were con-
ducted, the chosen implementation technology was OpenMP. It enables
creation of multi-platform applications for multiprocessor systems with
shared memory.

As a method of parallelization, the #pragma omp parallel for
clause was used. This kind of loop can be executed simultaneously by
multiple threads. OpenMP uses the fork-join model for a parallel ex-
ecution. When a thread encounters a parallel block of code, it creates a
group of one or more threads (inducing the original thread, called a
master thread). After finishing the work within a parallel block, the slave
threads are released and the master thread continues execution. Each
gray PARALLEL block on Fig. 5 corresponds to the one #pragma omp
parallel for loop.

One of the main strengths of the Xeon Phi accelerator is SIMD
(Single Instruction, Multiple Data) parallelization, namely vectoriza-
tion. However, Xeon Phi was chosen as a platform of an implementation
exclusively because it resembles PRAM, where the concept of vector-
ization is not present in a strict sense. Therefore, no special effort was
undertaken to fine-tune the algorithm to the hardware. Nevertheless,
18 different loops were (partially) vectorized by the compiler. The
following fragments of the code were vectorized:

(a) loading the data from the instances;
(b) initialization of various data structures;
(c) finding the path with the highest weight from m different starting

points (objective function calculation);
(d) neighborhood generation.

Most notably, the bottleneck of the algorithm was vectorized
(fragment c).

6. Computational experiments

In this section, computational experiments to implement and eval-
uate the proposed methods are presented. First, the test setup, including
the selection of the benchmarks and the target machine is outlined.
Then, the quality of the results obtained by the algorithm is briefly
discussed. Finally, the implementation of the algorithm, with different
parallelization strategies used, is tested on test (benchmark) instances.

6.1. Experiment setup

The test data were taken from the OR-library, http://people.brunel.
ac.uk/mastjjb/jeb/info.html (online; accessed 10-June-2017). Since
there are no benchmarks dedicated to the variant of the cyclic problem
researched in this paper, instances of the job shop scheduling problem
were chosen – proposed in Fisher and Thompson (1963) FT06, FT10,
FT20; and the instances LA01–LA40 from Lawrence (1984). The
benchmarks have been already used before in testing scheduling algo-
rithms for cyclic problems e.g. in Brucker and Kampmeyer (2005),
Kampmeyer (2006), and Kechadi et al. (2013). The instances were
adapted to the cyclic scheduling problem, by assuming that they define
single MPSs and then grouped according to their parameters.

The tests were carried out on a workstation with an Intel(R) Core

(TM) i7-3820 CPU @ 3.60 GHz, 4 GB RAM and Intel(R) Xeon Phi with
57 cores (4 threads each, one core is usually reserved for the system,
leaving 56 usable cores) and 5952 Mb GDDR @ 2.5Ghz. The code was
compiled with icpc (ICC) 14.0.4 20140805 compiler and run in a native
mode (the program was executed entirely on the coprocessor).

6.2. Effectiveness of the proposed algorithm

Although the quality of the solutions provided by the heuristic is not
the main goal of this research, it was necessary to check if the algorithm
is able to provide sufficiently good results. For each instance from the
test set, the sequential variant of the proposed algorithm was launched
with the time limit of 30 s. The initial solutions were generated by TSAB
algorithm. For each instance, the following parameters were calculated:

• T – the minimal cycle time of the best obtained solution.

• LB – lower bound of the cycle time.

• = −Gap ·100%T LB
LB – the relative gap between the obtained cycle

time T and the lower bound.

• ′ = −Gap ·100%T T
T

Best

Best – the relative gap between the obtained cycle
time T and the best known value of the cycle time.

The value of the lower bound was computed based on Property 1,
from the equation

∑=
∈ ∈

LB pmax .
k M i O

k
k (52)

Additionally, we show the efficiency of some existing heuristics for
cyclic job shop scheduling problem. Two heuristics are compared: the
tabu search proposed in Brucker and Kampmeyer (2005) (TS-BK) and
one of the most recent and advanced metaheuristics, based on the re-
current neural network LRNN, proposed in Kechadi et al. (2013).

As shown in Table 3, the algorithm proposed in this paper provided
the results better or equally good as TS-BK for all the tested instances.
27 solutions with the cycle time equal to the lower bound (marked with
a star) were obtained. In the remaining 16 cases, the Gap to the lower
bound varies from 1.4% to 28.5% with the average of 4.0%. For TS-BK
algorithm, the Gap varies from 0% to 33%, in average 4.9%. The su-
periority of PTS over TS-BK is particularly evident when analyzing the
values of ′Gap . The proposed algorithm PTS has found the best solutions
for all the instances (TS-BK has found worse ones for 14 instances).
Comparing the results for the cyclic job shop scheduling problem
(without machine chains), it is worth noting that TS-BK algorithm
generated better solutions than LRNN. The value of the Gap for LRNN
varies from 0.0% to 8.4%, in average 1.7%; whereas for TS-BK Gap
changes from 0.0% to 6.2%, on average 1.2%.

6.3. Evaluation of the parallelization strategies

The proposed PTS is the best known sequential algorithm for the
problem, therefore the orthodox speedup was measured in the experi-
ments (i.e. the computation times of the algorithm on 1 and p pro-
cessors were compared). The upper bounds of the speedups for different
number of threads (including a theoretical, infinite number of threads)
were calculated as described in Section 5. Considering the maximum
number of available threads was 224 (56 cores), experiments for: 1, 2,
4, 8, 16, 32, 56, 64, 96, 128, 160, 192 and 224 threads used were
conducted. Three different parallelization strategies were tested: the
objective function parallelization, the neighborhood parallelization (for
two different neighborhoods) and the mixed parallelization (for two
different neighborhoods). Since the PTS is a deterministic algorithm,
the tests consisted of a single algorithm run with 3200 iterations for
each experiment setup. Initial solutions were obtained by the simple
start procedure, as the quality of results were not measured.

The detailed results of the numerical experiments are shown in

W. Bożejko et al. Computers & Industrial Engineering 113 (2017) 512–524

520

http://people.brunel.ac.uk/mastjjb/jeb/info.html
http://people.brunel.ac.uk/mastjjb/jeb/info.html

Table 4. Besides the empirical speedups, the speedups upper bounds for
different number of threads and parallelization strategies are presented.
The results for 64, 96, 128, 160 and 190 threads are omitted from the
table, as Xeon Phi provides only 56 physical cores. The speedups for
each tested number of threads are presented in Fig. 6.

The results of the experiment on the objective function paralleli-
zation strategy (OF strategy) are shown in Table 4 and in Fig. 6e. Since
the upper bound of the speedup depends on the number of machines m,
three groups of instance are clearly visible in the figure (⩽ =m m6, 10
and =m 15). As shown in Table 4, for small instance sizes, the obtained
speedups are more than two times lower than the upper bound of the
speedup. With the increase in the problem size, the empirical speedup
also increases (even within the groups of the instances with the same
number of machines). For the instance groups: ×20 10, ×30 10 and

×15 15, the empirical speedups are less than two times lower than the

upper bounds. As it was expected, no significant further speedup in-
crease for the number of threads greater than the number of machines
was observed. What is more, increasing the number of threads above
the number of physical cores caused a constant decrease in the mea-
sured speedup (as shown in Fig. 6e).

The neighborhood parallelization (N strategy) was the second
strategy to be tested. The results are presented in Table 4 and in Figs. 6a
and b for the two tested neighborhoods N1 and N2 respectively. The
mean size of the neighborhood N2 was larger than N1 (as can it be seen
in column = ∞t), allowing for the higher speedups (up to 17 times).
The upper bound of the speedup again proved to be an effective tool for
estimating the number of threads required to maximize the speedup.
Also in this experiment, increasing the number of threads beyond the
number of physical cores caused a constant decrease in the measured
speedup (as shown in Figs. 6a and b). This is particularly noticeable in

Table 3
Performance analysis LRRNN, TS-K and PTS approaches.

Cyclic Job Shop with machine chains Cyclic Job Shop

TS-BK PTS TS-BK LRNN

Name LB T Gap Gap′ T Gap Gap′ LB T Gap T Gap

LA01 666 666∗ 0.0 0.0 666∗ 0.0 0.0 666 666∗ 0.0 666∗ 0.0
LA02 635 635∗ 0.0 0.0 635∗ 0.0 0.0 655 655∗ 0.0 655∗ 0.0
LA03 588 588∗ 0.0 0.0 588∗ 0.0 0.0 597 603 1.0 597∗ 0.0
LA04 537 556∗ 3.5 0.0 556 3.5 0.0 590 590∗ 0.0 590∗ 0.0
LA05 593 593∗ 0.0 0.0 593∗ 0.0 0.0 593 593∗ 0.0 593∗ 0.0
LA06 926 926∗ 0.0 0.0 926∗ 0.0 0.0 926 926∗ 0.0 926∗ 0.0
LA07 869 869∗ 0.0 0.0 869∗ 0.0 0.0 890 890∗ 0.0 890∗ 0.0
LA08 863 863∗ 0.0 0.0 863∗ 0.0 0.0 863 863∗ 0.0 863∗ 0.0
LA09 951 951∗ 0.0 0.0 951∗ 0.0 0.0 951 951∗ 0.0 951∗ 0.0
LA10 958 958∗ 0.0 0.0 958∗ 0.0 0.0 958 958∗ 0.0 958∗ 0.0
LA11 1222 1222∗ 0.0 0.0 1222∗ 0.0 0.0 1222 1222∗ 0.0 1222∗ 0.0
LA12 1039 1039∗ 0.0 0.0 1039∗ 0.0 0.0 1039 1039∗ 0.0 1039∗ 0.0
LA13 1150 1150∗ 0.0 0.0 1150∗ 0.0 0.0 1150 1150∗ 0.0 1150∗ 0.0
LA14 1292 1292∗ 0.0 0.0 1292∗ 0.0 0.0 1292 1292∗ 0.0 1292∗ 0.0
LA15 1207 1207∗ 0.0 0.0 1207∗ 0.0 0.0 1207 1207∗ 0.0 1207∗ 0.0
LA16 660 781 18.3 0.1 780 18.2 0.0 945 962 1.8 957 1.3
LA17 683 713 4.4 1.4 703 2.9 0.0 784 785 0.1 784∗ 0.0
LA18 623 768 23.3 0.7 763 22.5 0.0 848 861 1.5 848∗ 0.0
LA19 685 794 15.9 1.4 783 14.3 0.0 842 852 1.2 842∗ 0.0
LA20 744 769 3.4 0.0 769 3.4 0.0 902 902∗ 0.0 908 0.7
LA21 935 963 3.0 1.5 949 1.5 0.0 1046 1070 2.3 1074 2.7
LA22 830 875 5.4 1.6 861 3.7 0.0 927 960 3.6 932 0.5
LA23 1032 1032∗ 0.0 0.0 1032∗ 0.0 0.0 1032 1032∗ 0.0 1054 2.1
LA24 857 924.5 7.9 1.9 907 5.8 0.0 935 955 2.1 944 1.0
LA25 864 902 4.4 3.0 876 1.4 0.0 977 996 1.9 984 0.7
LA26 1218 1218∗ 0.0 0.0 1218∗ 0.0 0.0 1218 1218∗ 0.0 1224 0.5
LA27 1188 1197 0.8 0.8 1188∗ 0.0 0.0 1235 1293 4.7 1249 1.1
LA28 1216 1216∗ 0.0 0.0 1216∗ 0.0 0.0 1216 1242 2.1 1235 1.6
LA29 1105 1105∗ 0.0 0.0 1105∗ 0.0 0.0 1152 1212 5.2 1249 8.4
LA30 1335 1355 1.5 1.5 1335∗ 0.0 0.0 1355 1355∗ 0.0 1355∗ 0.0
LA31 1784 1784∗ 0.0 0.0 1784∗ 0.0 0.0 1784 1784∗ 0.0 1855 4.0
LA32 1850 1850∗ 0.0 0.0 1850∗ 0.0 0.0 1850 1850∗ 0.0 1947 5.2
LA33 1719 1719∗ 0.0 0.0 1719∗ 0.0 0.0 1719 1719∗ 0.0 1840 7.0
LA34 1721 1721∗ 0.0 0.0 1721∗ 0.0 0.0 1721 1721∗ 0.0 1849 7.4
LA35 1888 1888∗ 0.0 0.0 1888∗ 0.0 0.0 1888 1888∗ 0.0 1994 5.6
LA36 1028 1204.5 17.2 3.9 1159 12.7 0.0 1268 1305 2.9 1299 2.4
LA37 980 1326 35.3 5.2 1260 28.6 0.0 1397 1483 6.2 1405 0.6
LA38 876 1157.5 32.1 5.4 1098 25.3 0.0 1196 1267 5.9 1257 5.1
LA39 1012 1172 15.8 2.3 1146 13.2 0.0 1233 1274 3.3 1302 5.6
LA40 1027 1146 11.6 1222 1320 8.0
ft06 43 46 7.0 55 55 0.0
ft10 631 631∗ 0.0 930 930 0.0
ft20 1119 1119∗ 0.0 1165 1165 0.0

Average 4.9 0.8 4.0 0.0 1.2 1.7

W. Bożejko et al. Computers & Industrial Engineering 113 (2017) 512–524

521

the significant speedup drop between 56 (the number of physical pro-
cessors) and 64 threads.

The last test was conducted for the hybrid OF + N parallelization
strategy. The results for the neighborhoods N1 and N2 are shown in
Figs. 6c (neighborhood N1) and 6d (neighborhood N2) and in Table 4. In
this experiment, the highest speedups were achieved. The calculated
speedups upper bounds indicate that the limiting factor was the number
of threads. For N2, even 224 threads would be insufficient. Such high
computational power requirements resulted in the speedup increase for
the number of threads above 56 (Fig. 6c and d).

7. Conclusions

The paper presents a parallel tabu search algorithm for the cyclic

job shop scheduling problem. The objective function, as well as the
neighborhood evaluation parallelization were designed taking into
consideration the architecture of Intel Xeon Phi coprocessor. The nu-
merical experiments were carried out on the literature test data and
fully confirm the results of the theoretical research. For a given instance
of the problem, the proposed speedup upper bounds can be used to
determine how many processors (or threads) should be assigned to the
algorithm.

In the further research, we would like to extend our considerations
on the flexible job shop scheduling problem with parallel machines
and setup times, as well as and no-wait or no-store and no-idle
constrains.

Table 4
Speedups obtained during the computational experiments for various parallelization strategies, for different number of threads t used.

Strat. Group Speedup Speedup upper bound

×n m t= 2 t = 4 t = 8 t = 16 t = 32 t = 56 t = 224 t = 2 t = 4 t= 8 t = 16 t = 32 t = 56 t = 224 t =∞a

OF ×6 6 1.40 1.66 1.78 1.77 1.84 1.67 1.35 2.00 3.00 6.00 6.00 6.00 6.00 6.00 6.00
×10 5 1.29 1.54 1.54 1.57 1.62 1.49 1.17 1.67 2.50 5.00 5.00 5.00 5.00 5.00 5.00
×15 5 1.31 1.58 1.62 1.67 1.72 1.61 1.25 1.67 2.50 5.00 5.00 5.00 5.00 5.00 5.00
×20 5 1.33 1.62 1.69 1.77 1.84 1.76 1.34 1.67 2.50 5.00 5.00 5.00 5.00 5.00 5.00
×10 10 1.69 2.42 2.63 3.83 4.17 4.04 3.05 2.00 3.33 5.00 10.00 10.00 10.00 10.00 10.00
×15 10 1.78 2.62 2.88 4.41 4.85 4.75 3.53 2.00 3.33 5.00 10.00 10.00 10.00 10.00 10.00
×20 10 1.80 2.47 3.19 4.52 5.05 4.99 3.67 2.00 3.33 5.00 10.00 10.00 10.00 10.00 10.00
×30 10 1.81 2.31 3.60 4.80 5.24 5.19 3.81 2.00 3.33 5.00 10.00 10.00 10.00 10.00 10.00
×15 15 1.80 2.87 4.97 7.99 7.99 7.91 5.90 1.88 3.75 7.50 15.00 15.00 15.00 15.00 15.00

N1 ×6 6 1.29 1.48 1.50 1.49 1.49 1.47 1.09 1.67 2.48 2.63 2.63 2.63 2.63 2.63 2.63
×10 5 1.31 1.57 1.65 1.64 1.63 1.56 1.19 1.77 2.90 3.46 3.52 3.52 3.52 3.52 3.52
×15 5 1.24 1.42 1.47 1.47 1.47 1.43 1.07 1.87 2.72 3.03 3.17 3.17 3.17 3.17 3.17
×20 5 1.25 1.43 1.60 1.62 1.62 1.58 1.18 1.90 2.37 3.09 3.37 3.43 3.43 3.43 3.43
×10 10 1.41 1.81 2.18 2.24 2.24 2.16 1.65 1.91 2.74 4.07 4.48 4.50 4.50 4.50 4.50
×15 10 1.56 2.14 2.93 3.21 3.22 3.07 2.38 1.87 3.18 5.30 6.61 6.65 6.65 6.65 6.65
×20 10 1.65 2.44 3.44 4.26 4.30 4.11 3.20 1.89 3.43 5.99 8.68 8.98 8.98 8.98 8.98
×30 10 1.74 2.54 3.89 5.63 6.12 6.26 4.65 1.92 3.58 6.30 10.97 13.23 13.23 13.23 13.23
×15 15 1.67 2.59 3.55 4.61 4.54 4.80 3.56 1.90 3.44 6.00 9.29 10.00 10.00 10.00 10.00

N2 ×6 6 1.11 1.02 1.28 1.28 1.28 1.27 0.92 1.54 2.99 3.34 3.50 3.51 3.51 3.51 3.51
×10 5 1.31 1.55 2.19 2.47 2.52 2.49 1.85 1.65 3.01 4.50 6.86 7.18 7.19 7.19 7.19
×15 5 1.51 2.05 3.23 4.02 4.55 4.54 3.38 1.82 3.40 5.84 9.48 13.03 13.28 13.28 13.28
×20 5 1.64 2.27 3.99 5.09 6.54 6.57 4.91 1.90 3.59 6.55 11.08 17.96 18.40 18.43 18.43
×10 10 1.60 2.28 3.47 4.14 4.64 4.66 3.42 1.89 3.47 5.91 9.33 11.09 11.18 11.18 11.18
×15 10 1.64 2.60 3.81 4.80 5.75 5.78 4.23 1.88 3.53 6.08 10.39 13.31 13.62 13.62 13.62
×20 10 1.59 2.67 3.83 5.47 7.36 7.48 5.51 1.94 3.67 6.61 11.49 18.38 19.18 19.45 19.45
×30 10 1.71 2.85 4.29 7.22 9.74 11.45 8.58 1.96 3.79 7.14 12.90 22.30 30.53 30.82 30.82
×15 15 1.60 2.71 3.61 5.69 6.68 7.05 5.13 1.89 3.59 6.28 10.74 15.54 16.84 16.90 16.90

+N OF1 ×6 6 1.52 2.12 2.38 2.85 2.76 2.86 2.18 1.99 3.80 6.09 10.83 13.52 13.66 13.66 13.66
×10 5 1.38 2.03 2.31 2.74 2.73 2.52 2.13 1.87 3.32 6.01 10.23 12.64 13.19 13.19 13.19
×15 5 1.30 1.96 2.32 2.69 2.63 2.48 2.08 1.81 3.05 5.62 8.69 9.69 10.39 10.55 10.55
×20 5 1.33 2.04 2.53 3.03 3.01 2.91 2.41 1.76 2.85 5.41 7.25 9.79 10.94 11.54 11.54
×10 10 1.60 2.74 3.89 6.50 7.86 8.47 7.57 1.98 3.59 6.32 11.69 17.75 24.56 31.61 31.61
×15 10 1.66 3.20 5.55 9.06 11.95 13.68 13.14 2.00 3.90 7.42 13.73 24.78 36.56 57.96 57.96
×20 10 1.81 3.37 5.39 10.15 14.15 16.58 16.94 2.00 3.94 7.66 14.49 26.46 40.75 76.32 76.32
×30 10 1.84 3.52 5.68 11.06 17.11 21.43 24.03 2.00 3.96 7.76 14.97 27.70 44.65 109.33 113.63
×15 15 1.68 3.09 6.07 11.23 18.12 23.90 27.21 1.99 3.94 7.72 14.98 27.56 43.86 111.97 114.92

+N OF2 ×6 6 1.27 1.61 2.07 2.35 2.44 2.18 1.84 1.98 3.12 6.13 7.12 8.74 10.17 10.29 10.29
×10 5 1.39 2.11 2.87 3.78 3.88 3.74 3.28 1.80 3.20 6.15 9.64 15.18 22.28 23.73 23.73
×15 5 1.57 2.36 3.83 5.89 6.98 6.82 6.65 1.91 3.60 6.86 12.16 20.51 31.36 49.04 49.20
×20 5 1.69 2.67 4.56 7.34 9.83 10.17 10.17 1.95 3.83 7.43 14.03 25.15 39.70 73.01 73.01
×10 10 1.72 2.88 5.00 8.49 12.10 14.34 14.46 1.98 3.89 7.54 14.24 25.74 40.26 78.87 79.43
×15 10 1.75 2.83 5.78 9.40 14.99 18.46 21.02 2.00 3.89 7.47 14.47 26.14 41.78 110.03 113.46
×20 10 1.73 2.94 5.73 9.79 16.69 22.04 25.95 2.00 3.97 7.81 15.20 28.74 46.28 138.33 151.35
×30 10 1.74 3.17 5.93 10.93 18.28 26.77 34.14 2.00 3.98 7.88 15.47 29.88 49.89 154.45 242.24
×15 15 1.76 3.08 6.04 10.93 19.68 27.40 33.89 1.99 3.90 7.56 14.79 27.45 44.91 135.65 193.20

The highest values of empirical speedups and upper bounds for each group and the strategy are marked in bold font.
a Upper bound calculated for infinite number of threads.

W. Bożejko et al. Computers & Industrial Engineering 113 (2017) 512–524

522

Fig. 6. Speedups obtained from computational experiments for different parallelization strategies.

W. Bożejko et al. Computers & Industrial Engineering 113 (2017) 512–524

523

References

Bożejko, W., Gnatowski, A., Niżyński, T., &Wodecki, M. (2016). Tabu Search algorithm
with neural tabu mechanism for the cyclic job shop problem. In Artificial intelligence
and soft computing. Lecture notes in computer science (Vol. 9693, pp. 409–418).

Bożejko, W. (2012). On single-walk parallelization of the job shop problem solving al-
gorithms. Computers & Operations Research, 39, 2258–2264.

Bożejko, W., Gnatowski, A., Idzikowski, R., & Wodecki, M. (2017). Cyclic flow shop
scheduling problem with two-machine cells. Archives of Control Sciences, 27(2),
151–168.

Bożejko, W., Pempera, J., & Smutnicki, C. (2013). Parallel Tabu Search algorithm for the
hybrid flow shop problem. Computers & Industrial Engineering, 65, 466–474.

Bożejko, W., Uchroński, M., & Wodecki, M. (2016). Parallel metaheuristics for the cyclic
flow shop scheduling problem. Computers & Industrial Engineering, 95, 156–163.

Brucker, P., & Kampmeyer, T. (2005). Tabu Search algorithms for cyclic machine sche-
duling. Journal of Scheduling, 8, 303–322.

Brucker, P., & Kampmeyer, T. (2008a). Cyclic job shop scheduling problems with
blocking. Annals of Operations Research, 159, 161–181.

Brucker, P., & Kampmeyer, T. (2008b). A general model for cyclic machine scheduling
problems. Discrete Applied Mathematics, 156(13), 2561–2572.

Burke, E. K., De Causmaecker, P., Berghe, G. V., & Van Landeghem, H. (2004). The state
of the art of nurse rostering. Journal of Scheduling, 7(6), 441–499.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (1990). Introduction to algorithms.
MIT Press and McGraw-Hill.

Fisher, H., & Thompson, G. L. (1963). Probabilistic learning combinations of local job-
shop scheduling rules. In J. F. Muth, & G. L. Thompson (Eds.). Industrial scheduling
(pp. 225–251). Englewood Cliffs, NJ: Prentice-Hall.

Gertsbakh, I., & Serafini, P. (1991). Periodic transportation schedules with flexible de-
parture times: An interactive approach based on the periodic event scheduling pro-
blem and the deficit function approach. European Journal of Operational Research,
50(3), 298–309.

Glover, F., & Laguna, M. (1997). Tabu search. Kluwer Academic Publishers July.
Grabowski, J., & Wodecki, M. (2005). A very fast tabu search algorithm for the job shop

problem. In C. Rego, & B. Alidaee (Eds.). Adaptive memory and evolution; tabu search
and scatter search (pp. 117–144). Dordrecht: Kluwer Academic Publishers.

Hall, N. G., Lee, T. E., & Posner, M. E. (2002). The complexity of cyclic shop scheduling
problems. Journal of Scheduling, 5(4), 307–327.

Hanen, C. (1994). Study of a NP-hard cyclic scheduling problem: The recurrent job-shop.
European Journal of Operational Research, 72, 82–101.

Hanen, C., & Munier, A. (1995). Cyclic scheduling on parallel processors: An overview. In

P. Chretienne, E. G. CoffmanJr., J. K. Lenstra, & Z. Liu (Eds.). Scheduling theory and its
applications (pp. 94–226). New York: Wiley Chapter 4.

Hitz, K. L. (1980). Scheduling of flow shops II. Report no. LIDS-R-879. MIT, Cambridge,
Massachusetts: Laboratory for Information and Decision Systems.

Jalilvand-Nejad, A., & Fattahi, P. (2015). A mathematical model and genetic algorithm to
cyclic flexible job shop scheduling problem. Journal of Intelligent Manufacturing, 26,
1085–1098.

Kampmeyer, T. (2006). Cyclic scheduling problems. Ph.D. DissertationUniversitat
Osnabruck.

Kats, V., & Levner, E. (2003). Polynomial algorithms for periodic scheduling of tasks on
parallel processors. In L. T. Yang, & M. Paprzycki (Vol. Eds.), Practical applications of
parallel computing: Advances in computation theory and practice: Vol. 12, (pp. 363–370).
Canada: Nova Science Publishers.

Kechadi, M., Low, K., & Goncalves, G. (2013). Recurrent neural network approach for
cyclic job shop scheduling problem. Journal of Manufacturing Systems, 32(4),
689–699.

Kubale, M., & Nadolski, A. (2005). Chromatic scheduling in a cyclic open shop. European
Journal of Operational Research, 164(3), 585–591.

Kubiak, W. (2005). Solution of the Liu¢Layland problem via bottleneck just-in-time se-
quencing. Journal of Scheduling, 8(4), 295–302.

Lawrence, S. (1984). Resource constrained project scheduling: An experimental investigation
of heuristic scheduling techniques, GSIA. Pittsburgh, PA: Carnegie Mellon University.

Lee, J., & Korbaa, O. (2004). Modelling and scheduling of ratio-driven FMS using un-
folding time Petri nets. Computers & Industrial Engineering, 46(4), 639–653.

Lee, T. E., & Posner, M. E. (1997). Performance measures and schedules in periodic job
shops. Operations Research, 45(1), 72–91.

Méndez, C.a., Cerdá, J., Grossmann, I. E., Harjunkoski, I., & Fahl, M. (2006). State-of-the-
art review of optimization methods for short-term scheduling of batch processes.
Computers and Chemical Engineering, 30, 913–946.

Nowicki, E., & Smutnicki, C. (1996). A fast taboo search algorithm for the job shop
problem. Management Science, 42(6), 797–813.

Pinedo, M. L. (2008). Scheduling: Theory, algorithms and systems. New York: Springer.
Pinedo, M. L. (2009). Planning and scheduling in manufacturing and services (2nd ed.). New

York: Springer.
Pinto, T., Barbosa-Póvoa, A. P. F. D., & Novais, A. Q. (2005). Optimal design and retrofit

of batch plants with a periodic mode of operation. Computers and Chemical
Engineering, 29(6 Spec. iss.), 1293–1303.

Trautmann, N., & Schwindt, C. (2009). A cyclic approach to large-scale short-term
planning in chemical batch production. Journal of Scheduling, 12(6), 595–606.

W. Bożejko et al. Computers & Industrial Engineering 113 (2017) 512–524

524

http://refhub.elsevier.com/S0360-8352(17)30459-X/h0015
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0015
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0020
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0020
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0020
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0025
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0025
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0030
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0030
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0035
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0035
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0040
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0040
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0045
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0045
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0050
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0050
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0055
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0055
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0060
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0060
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0060
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0065
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0065
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0065
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0065
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0070
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0075
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0075
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0075
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0080
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0080
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0085
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0085
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0090
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0090
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0090
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0095
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0095
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0100
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0100
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0100
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0105
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0105
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0110
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0110
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0110
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0110
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0115
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0115
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0115
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0120
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0120
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0125
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0125
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0130
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0130
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0135
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0135
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0140
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0140
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0145
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0145
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0145
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0150
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0150
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0155
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0160
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0160
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0165
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0165
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0165
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0170
http://refhub.elsevier.com/S0360-8352(17)30459-X/h0170

	Parallel tabu search for the cyclic job shop scheduling problem
	Introduction
	Problem definition
	Mathematical model
	Comparison to other problems

	Graph model
	Tabu Search
	Neighborhood
	Tabu mechanism
	Start procedure

	Parallelization
	Objective function parallelization (OF strategy)
	Neighborhood parallelization (N strategy)
	Mixed parallelization (OF+N strategy)
	Implementation

	Computational experiments
	Experiment setup
	Effectiveness of the proposed algorithm
	Evaluation of the parallelization strategies

	Conclusions
	References

