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Abstract. The paper deals with parallel variants of optimization algo-
rithms dedicated to solve transportation optimization issues. The prob-
lem derives from practice of logistics and vehicle routes planning. We
propose parallelization method of the cost function determination dedi-
cated to be executed on GPU architecture. The method can be used in
metaheuristic algorithms as well as in exact approaches. *

1 Introduction

Vehicle Routing Problem (VRP) is an NP-hard problem, which solution consti-
tutes a key element for effectiveness improvement in transportation. The prob-
lem, introduced by Dantzig and Ramser [8] in 1959, appears in many variants
with different level of complexity. From this time literature relating to it has
been expanded by thousands of items. The software used to solve VRP prob-
lems generates considerable savings of 5% — 30% for Companies which are using
t [10]. Up to now, the exact methods are not able to solve in a reasonable time
solutions for instances with more than 50 - 100 clients [10]. This is a very se-
rious limit if we take into account that customer lists of large companies may
contain thousands of items. Consequently, for such cases, it is necessary to use
approximate methods.

In Capacitated Vehicle Routing Problem (CVRP) we consider the following
scenario: we own a delivery business that sends goods to clients via vehicles.
Transport begins at the base station. The time needed to travel from base sta-
tion to every client (and from every client to every other client) is known. We
can look at this set-up as a full weighted graph with one highlighted vertex. The
goal is to deliver every package to clients in the smallest possible time according
to their demands. The capacity of each vehicles is fixed. The vehicles needs to
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go back to the base station to reload when empty. A general CVRP assume that
demand of every client, number of vehicles and their capacity are not bound by
any assertion. The vehicle routing problems have been attracting the interest of
combinatorial optimization experts for over 50 years. The motivation to study
this class of problems lies in its relevance to the real world as well as in its diffi-
culty. One of books that are worth mentioning is [17]. It is an overview of main
VRP variations (including CVRP). The authors show both exact and heuristic
methods of finding the solutions. Large portion of the book covers the main vari-
ations, like: VRP with time windows, backhauls, pickup and delivery. Parallel
Tabu Search for multi-criteria VRP problem was proposed in [11]. Other efficient
methods, for multi-criteria discrete problems, were proposed and tested. Among
them simulated annealing [13], genetic algorithm with local search method [15]
or GACO hybrid algorithm [16]. Our further research on the multi-criteria VRP
will certainly draw from the above mentioned work.

In our variation of the CVRP we assume that every client demands exactly
one package and we have only one delivery vehicle with fixed capacity. It is easy
to see that with these constraints our problem transforms into a permutation
problem. Furthermore, it is very similar to the classical Travelling Salesman
Problem (TSP) [7] with only difference being exclusion of the base station from
permutation. Therefore, only vertices that represent clients are being permu-
tated. Next, we can evenly partition the resulting permutation into sets of size
equal to the capacity of the vehicle. These sets represent paths the vehicle will
make with each round of deliveries.

The main goal of the research presented in this paper is to propose a new
methodology of parallelization of the cost function determination function ded-
icated to be executed on the GPGPU (General-Purpose computing on Graphics
Processing Units). The paper is organized as follows: firstly, we give a specifica-
tion of the CVRP variation we will be solving. Next, we introduce multi-GPU
algorithm. After that we show the results of the performed experiments. The
main goal is to show the scalability of the algorithm.

2 Problem Definition

We consider Capacity constrained VRP (CVRP) here, in which the main con-
straint is connected with capacity of a single vehicle. Assumptions of the CVRP
are:

— a fixed number of identical vehicles with specific capacity,

— a fixed number of customers with a specific orders of sizes and locations

— vehicles are able to perform client orders, but the total size handled by
vehicle orders cannot be larger than its carrying capacity,

— vehicles are located in a central base, in which they starts and finish its work,

— travel costs between the points are given,

— the goal of optimization is to minimize the cost of customers service.
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An instance of the CVRP can be described with using following notions:

C ={1,...,n} — set of clients,
G = (N, E) — graph, where

N ={0}UC — base with a set of clients (set of vertexes),
E CN x N - set of edges,

D ={d,...,d,} — size of order of particular clients,

)

S Ot

q>d;,i €{1,..,n} — capacity of a single vehicle,
V ={1,..,K} — set of vehicles,
[4;;] — matrix of transport costs for
elements of the set N, 4,7 =0,1,2,...

,.\/\/_\,_\A/_\,_\
—_ — — — N N

EN|

A solution of the CVRP consists of above elements and fulfills constraints pre-
sented below:

— K routes(single route for each vehicle),

— beginning and end of each routes in the same base,

total size of all order on the route < g,

each client is served exactly one time,

— sum of costs of driving on the particular route the cost of this route,
sum of routes costs is the cost of the solution.

The aim of the optimization can be formulated as:
Find a solution with the smallest cost.

An adequate formal description can be presented as:

minimalize Z Z Ay, (9)

keV i={0,1,...,n}
i={0,1,...,n}

1, if the vehicle k drives from i to j

0, otherwise.

k. _
where x7; = {

3 Parallel Algorithm

The role of parallel algorithms which solves NP-hard problems significantly in-
creased in the last decade, in particular for vehicle routing problems.

Rego [14] proposed a parallel tabu search algorithm (see also [4,5,6]) for the
VRP which uses ejection chain type neighborhood; four slave processors were
used in the implementation. The SSMS (Single Starting point Multiple Strate-
gies) model was used, according to the classification Vo ss and cite Voss, i.e.
slave processors receive the same starting solution, but have used different search
strategies. Evaluation of the objective function also takes place concurrently.
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Alba and Dorronsoro [1] proposed parallel genetic algorithm for VRP (cellu-
lar version), wherein crossover and mutations operators used local search proce-
dures. The algorithm allowed oppearing if unfeasible solutions using the appro-
priately modified cost (penalty) function. The population is organized in mesh
structure with crossover limitation to four neighbors on the mesh (see [2]).

Multi-colonial ant colony optimization (ACO) algorithm for VRP was pro-
posed in the work of Doerner et al. [9]. Authors propose three different strategies
of master-slave type with using standard local search operators and focusing ex-
clusively on sequential algorithm speedup without improvement of the quality
of obtained solutions. Tests were performed on 32 processors. Computational
experiments show good scalability of the algorithm using up to 8 processors, for
the greater number of them, as a result of increase the role of communication in
parallel algorithm, the efficiency deteriorating.

On the other hand, for the problem of routing with time windows ( VRP with
Time Windows, VRPTW) Bouthillier and Crainic [12] proposed an effective pro-
cedure of parallel optimization based on four metaheuristics (two based on the
tabu search method and two genetic-based approaches) and post-optimization
procedure which uses ejection chains technique as well as local search procedures.
The authors analyzed the profit resulting from co-operating nature of their algo-
rithm by comparing the quality of obtained solutions with the approach without
communication between processors.

4 Case Study

The huge computational complexity of the problem forces the use of more so-
phisticated techniques than a complete overview. No matter what technique will
be used common fragments which are specific for a problem will occur. For VRP
problems one of such parts is computing the cost of a solution. The following pa-
per provides a study of scalability for computing the solution cost by using GPU
units for three problems: VRP (without any limitations), Distance constrained
Vehicle Routing PRoblem (DVRP) and Distance and Capacity Constrained Ve-
hicle Routing Problem (DCVRP).

4.1 Generation of Test Data

Test data was generated in the initialization phase of the algorithm. In order to
generate the cost (distance) matrix a pseudo-random number generator (srand
function from gec 4.4.3) was initialized with the constant value 7378342. Matrix
elements were calculated as follow:

— if the element is located on the main diagonal of the matrix it takes the
value 0,

— if the element is located above the main diagonal it is set to a random value
in the range from 1 to 30 (computed by using rand function from gec 4.4.3),
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— if the element is located below the main diagonal then it will take the value
of an element obtained by swapping its indexes. Next a pseudo-random test
number is drawn. If it is even then the element value will increase by 0.20
and decrease by 0.20 otherwise.

In order to generate the capacity demands of each client a pseudo-random
number generator (srand function from gee 4.4.3) was initialized with the con-
stant value 478 342. Each value was pseudo-randomly selected within the range
from 0 to 99 (computed by using rand function from gcc 4.4.3).

The solutions were constructed in two stages. In the first stage the length of
the route for a single vehicle was calculated by dividing the number of customers
by the number of available vehicles (1 was added to the length of the route for
the first R routes, where R is the rest of the division). Next the vehicle routes
were populated with rising client numbers. In the second stage the order of
solution elements was changed pseudo-randomly. For this purpose, a pseudo-
random number generator was initialized with the constant value 5625 (srand
function from gee 4.4.3). Next two positions were picked pseudo-randomly and
their values were swapped. The action was repeated as many times as the solution
length.

4.2 Hardware
Studies were performed by using the following hardware:

— Intel R Core i7 CPU X 980 @ 3.33GHz (12 available cores),

— 24GB RAM memory,

— nVidia Tesla S2050 - 4 GPU units, each with 448 cores, 14 multiprocessors
and 3GB RAM memory (global).

Used GPU units are equipped with the following types of memory (OpenCL
names):

— global memory - the largest and slowest volume of available memory,

— constant memory - heavily buffered (an therefore much faster) read-only
global memory. For Tesla S2050 GPU units its volume is limited to 64KB,

— local memory - very fast on-chip memory. For Tesla S2050 GPU units its
volume is limited to 48KB per multiprocessor,

— private memory - this term usually refers to the registers.

Used GPU units provide a mechanism that can hide the global memory latency
by minimising memory transactions. Unfortunately random accesses which are
present in cost determination for the VRP problems make it impossible to take
advantage of it.

4.3 Solution Methods

The maximum number of threads used was calculated by multiplying the total
number of available cores with a multiplier. The resulting value is rounded up
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to the nearest multiple of the block size. Solutions are divided between the
available devices (GPU) and threads (not necessarily the maximum number).
While running the algorithm each threads calculates the costs for its set of
solutions.

For the VRP problem the cost (distance) matrix and appropriate solutions
were copied to the global memory of available devices. Additional global memory
area is reserved for returning the calculated total cost value for each solution. The
calculation is mostly associated with data reads of the first two global memory
areas.

For the DVRP problem no additional data was copied to the devices but
an additional global memory region was allocated for returning the maximum
vehicle distance for each solution. The algorithm was slightly more complex
due to the calculation of two costs but it does not involve additional reading
of global memory. Computational overhead associated with parallelism remains
unchanged, so the scalability of the problem DVRP should be slightly better
than the VRP problem.

For the DCVRP problem additional data containing the clients capacity de-
mands was copied to the devices. This data was read for calculating the maxi-
mum load of a single vehicle for each solution. Due to the necessity of additional
cost calculation the algorithm gained complexity again but it is associated with
additional global memory readings. In order to minimize the latency impact the
algorithm was developed in two versions. The first version holds the additional
DCVRP specific data in the global memory and the second in the constant mem-
ory. Computational overhead associated with parallelism is identical for both
versions, so the scalability for the version using constant memory should be bet-
ter. Fig. 1 contains the GPU code fragment which is responsible for calculating
the costs for the DCVRP problem with constant memory.

4.4 Computational Experiments

The study was focused on the analysis of the scalability of calculating solutions
costs for three problems (VRP, DVRP, DCVRP). The DCVRP problem was
tested in two variants. In total four problems were tested.

The maximum number of threads was determined by multiplying the number
of available cores by the multiplier. Each problem was tested with three different
multiplier values (1, 2, 3).

The figures Fig.1.A., Fig.1.B, Fig.1.C, Fig.1.D. present the speed up (code
executed on the GPU) for an increasing number of threads with respect to one
thread for all four problems, the multiplier value set to 3, the length of a single
solution set to 1099 and the total number of solutions set to 40000. The speedup
is increasing even when the number of threads exceeds the number of available
cores. This increase is relatively stable when the number of threads is less than
about 2400.

Maximal speedups obtained for a particular problem was:

— VRP: 1098.17,
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//This is one of the cost functions used to calculate the costs
//_global and _ constant - address space used to refer to memory
// objects allocated in the global or constant memory pool
//COST_TYPE - data type used to store track costs
//CAPA_TYPE - data type used to store vehicle capacities/client demands
//matrix, matrixRank - cost matrix and rank of the matrix
//clientCapas - demands of all clients
//solution, sollLen - the solution and length of the solution
//cost, maxVehicle, maxVehicleCapa - variables used to return the calculated
// values of cost of all tracks, maximum track cost, maximum track demand
void dcvrpCountCost( global COST TYPE* matrix, int matrixRank,
__constant CAPA TYPE * clientCapas,
global int * solution, int sollen,
__global COST_TYPE * cost, _ global COST TYPE * maxVehicleCost,
__global CAPA TYPE * maxVehicleCapa) {

//following 5 variables are stored in private memory (usually registers)
//private memory is the fastest type of memory avialable
COST_TYPE totalSolCost = 0;

//dvrp
COST_TYPE vehicleCost = matrix[0 + solution[0]];
COST_TYPE tmp_maxVehicleCost = 0;

//cvrp
CAPA_TYPE vehicleCapa = clientCapas[solution[0]-1];
CAPA_TYPE tmp_maxVehicleCapa = 0;

//iterate over the elements of the solution
for(int i=0; i<sol len-1; i++) {
//add travel cost between two clients or base to current track cost
vehicleCost += matrix[solution[i]*matrixRank + solution[i+1]];
//add client demand to current track demand
if(solution[i] != 0) {
vehicleCapa += clientCapas[solution[i]-1];

//if this is true then all costs and demands of
//the current track have been added
if(solution[i+1]==0) {
//dvrp
//check if the current track has the biggest cost
if(i==0 || tmp_maxVehicleCost<vehicleCost) {
tmp_maxVehicleCost = vehicleCost;

}

//cvrp

//check if the current track has the biggest demand
if(i==0 || tmp_maxVehicleCapa<vehicleCapa) {

tmp maxVehicleCapa = vehicleCapa;

//add current track cost to total cost of all tracks
totalSolCost += vehicleCost;

vehicleCost = 0;

vehicleCapa 0;

}

¥

//following operations are used for the last track
vehicleCost += matrix[solution[sol len-1]*matrixRank + 0];
vehicleCapa += clientCapas([solution[sol len-1]-1];
totalSolCost += vehicleCost;

//dvrp
if(tmp_maxVehicleCost<vehicleCost) {

tmp_maxVehicleCost = vehicleCost;
}

//cvrp
if(tmp_maxVehicleCapa<vehicleCapa) {

tmp_maxVehicleCapa = vehicleCapa;
}

//copy the results to global memory
*cost = totalSolCost;

*maxVehicleCost = tmp maxVehicleCost;
*maxVehicleCapa = tmp_maxVehicleCapa;

Fig. 1. GPU code
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— DVRP: 1419.27,
— DCVRP with global memory: 1395.84,
— DCVRP with constant memory: 1457.15.

The significant speedup improvement is very explicit between the DVRP and
VRP problems which confirms previous assumptions. Increased complexity of
the DCVRP algorithm was not enough to compensate the additional global
memory readings. Therefore the maximal speedup obtained for DCVRP with
global memory was lower than the maximal speedup for the DVRP problem.
The use of constant memory has significantly increased this value so that it was
even better than the speed up value obtained for the DVRP problem.
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The figures Fig.2.A., Fig.2.B, Fig.2.C, Fig.2.D. present the change of the op-
timum block size with respect to the number of threads (block size was tested
in the range from 1 to 32). A relatively stable growth can be observed when
the number of threads is less than about 2400. Beyond this value the optimum
size of the block still does not fall below certain base levels. For example for
the DCVRP with constant memory the block size base level increases after the
number of threads exceeds 448, 904, 1368, 1808, 2340. The number of available
multiprocessors is 4x14=56 so the number of blocks is never greater than 8-9
per multiprocessor.

The figures Fig.3.A., Fig.3.B, Fig.3.C, Fig.3.D. present the obtained speedup
for different number of devices (in respect to one device) for all four problems.
For four devices the speed up was never less than 3.5 times.

The figure Fig.4. presents the execution time (GPU code) for the studied prob-
lems depending the number of solutions (the solution length is 1099). Explicit
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increase can be observed between the VRP, DVRP and DCVRP with global
memory problems. For the DCVRP with constant memory problem the time
has dropped so much that its chart practically overlaps with the time chart for
the DVRP problem.
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5 Conclusions

Vehicles routes determination constitutes a major challenge for modern optimiza-
tion algorithms. Most existing approaches are based on metaheuristic approach,
due to the possibility of (approximate) solving of large size examples. Recently,
the the role of parallel and distributed algorithms have been increasing, which
further expands the range of potential applications of parallel discrete optimiza-
tion methods in the field of logistics and management. Calculating the solution
cost is one on of the most computationally intensive part of a local optimiza-
tion algorithm of a VRP problem. In this paper we have checked the possibility
to move cost calculation to the GPU in order to take advantage of the larger
number of available cores. The method has been parallelized and tested against
several aspects of the GPU architecture like the usage of different memory pools,
different block sizes and number of threads in relation to the number of physical
cores and multiprocessors.
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