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Abstract. The goal of this paper is to propose a methodology of the
effective cost function determination for the job shop scheduling prob-
lem in parallel computing environment. Parallel Random Access Machine
(PRAM) model is applied for the theoretical analysis of algorithm effi-
ciency. The methods need a fine-grained parallelization. therefore the
approach proposed is especially devoted to parallel computing svstems
with fast shared memory. The methods proposed are tested with CUDA
and OpenC'L and ran on NVidia and ATl GPUs.

1 Introduction

In this work we are showing the method of parallelization of the job shop problem
solving algorithm for GPGPU. consisting in parallelization of the cost function
calculations. There are only few papers dealing with single-walk parallel algo-
rithms for the job shop scheduling problem. Most of papers examine multiple-
walk parallelization. e.g. parallel metaheuristics. without using of any theoretical
properties of this scheduling problem. From the single-walk approaches. Bozejko
et al. [2] proposed a simulated annealing metaheuristic for the job shop problem.
Steinhofel et al. [6] described the method of parallel cost function determination
in O(log®0) time on O(0*) processors. where o is the number of all operations.
Bozejko [3] considered a method of parallel cost function calculation for the flow
shop problem which constitutes a special case of the job shop problem. Here we
show a cost-optimal parallelization which takes a O(d) time on O(o/d) proces-
sors. where d is the number of layers in the topological sorted graph represent-
ing a solution. Finally. we conduct computational experiments on two types of
GPU architectures (provided by nVidia and ATT) which fully confirm theoretical
results.
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2 The Job Shop Problem

Let us consider a set of jobs J = {1.2....n }. set of machines M = {1.2.....n} and
a set of operations O = {1.2.....0}. A set O is decomposed into subsets connected
with jobs. A job j consists of a sequence o; operations indexed consecutively by
(l,—1+1.[j_1+2....1,) which have to be executed in the order. where {; = 377, o,
is a total number of operations of the first j jobs. j =1.2...n. 1, =0.3."_, 0, = 0.
An operation i has to be executed on the machine v, € M without any idleness in
the p, > 0. i € O time. Each machine can execute at most one operation in any
moment of time. A feasible solution constitutes a vector of times of the operation
execution beginning S= (57, S>.....S,) such that the following constrains are
fulfilled:

S, 120, j=12.0n0. (1)

Si + pi <8y, .’.:fj_]-i-l.i'_;'_l-f-? ..... !!J'—j.. J = by 2ewaslil (2)

T
‘(3

Si+p;£8; or 8;+p; <8 i, J€ =8 % (3)

Certainly, C'; = S; + p;. An appropriate criterion function has to be added to
the above constrains. The most frequently met are the following two criteria:
minimization of the time of finishing of all the jobs and minimization of the sum
of jobs’ finishing times. From the formulation of the problem we have C; = (7.

JEJ.

The first criterion. the time of finishing of all the jobs:

Cinax(8) = max (. (4)

1<j<n

corresponds to the problem denoted as .J||C,,.. in the literature. The second
criterion, the sum of the jobs™ finishing times:

C(S) =Y G (5)

=

corresponds to the problem denoted as J|| > C; in the literature.

Both described problems are strongly NP-hard and although they are sim-
ilarly modeled, the second one is considered to be harder because of lack of
some specific properties (so-called block properties. see [5]). They are used in
optimization of execution time of solving algorithis.

2.1 Disjunctive Model
A disjunctive model is based on the notion of disjunctive graph G* = (O*. U~ U

V). This graph has a set of vertices O* = O U {0} which represents operations
(with an additional artificial beginning operation (0). for which py = 0). a set
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of conjunctive arcs (directed) which show a technological order of operation’s
execution

n [,=1 T
rr=vut’=J U {Gi+1yuJ{o.0-+1)} (6)
J=li=l, 1 +1 =1

and the set of disjunctive arcs (non-directed) which shows a possible schedule of
operations” realization on each machine

v= U {Gp.Gak (

L JEOLIE] P, =1,

=
o

Disjunctive arcs {(i.j).(j.7)} are in fact pairs of directed arcs with inverted
directions connecting vertices / and .

A vertex / € O has a weight p; which equals to the time of execution of
the operation ;. Arcs have the weight zero. A choice of exactly one arc from
the set {(i.j).(j./)} corresponds to determination of a schedule of operations
execution — "7 before J7 or 7 j before i, A subset 11" C V7 consisting exclusively
of directed arcs. at most one from each pair {(i. j).(j. /) }. we call a representation
of disjunctive arcs. Such a representation is complete, if all the disjunctive arces
have determined directions. A complete representation. defining a precedence
relation of jobs™ execution on the same machine. generates one solution  not
always feasible. if it includes cyveles. A feasible solution is generated by a complete
representation 11" such that the graph G(117) = (O.U U ") is acvelic. For a
feasible schedule values S; of the vector of operations execution starting times
S= (S]. 55.....5,) can be determined as a length of the longest path incoming
to the vertex / (without p;). Because the graph G(117) includes o vertices and
O(0%) ares. therefore determining the value of the cost function for a given
representation 117 takes the O(0?) time.

2.2 Combinatorial Model

In case of many applications a combinatorial representation of the solution is
better than a disjunctive model for the job shop problem. It is voided of redun-
dance. characteristic for the disjunctive graph. it denotes the situation where
many disjunctive graphs represent the same solution of the job shop problem.
A set of operations O can be decomposed into subsets of operations executed
on the single. determined machine k € M. M, = {i € O : v; = k} and let
my. = (M|, A schedule of operations execution on a machine & is determined
by a permutation mp = (mp(1). 7 (2)..... mr(my)) of elements of the set Ay
k€ M. where m (/) means such an element from A/, which is on the i position
in 7. Let IT(y) be a set of all permutations of elements of A/f;,. A schedule of
operations’ execution on all machines is defined as 7 = (7. ma..... Tm ). Where
e ll. IT = II(My) x [I(Ms) x ... x II(M,,). For a schedule # we create a
directed graph (digraph) G(7) = (O.U U E(x)) with a set of vertices @ and a
set of arcs U UE(7)). where U is a set of constant arcs representing technological
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order of operations execution inside a job and a set of arcs representing an order
of operations” execution on machines is defined as

meoomg —1

Em = U {mi).mi+ 1)) i
k

]l =1

Each vertex i € O has the weight p;. each arc has the weight zero. A schedule
7 is feasible. if the graph G(m) does not include a cycle. For a given feasible
schedule 7 the process of determining of the cost function value requires the
O(o) time, thus shorter than for the disjunctive representation.

3 Sequential Determination of the Cost Function

Taking into consideration the constraints (1)-(3) presented in Section 2 it is
possible to determine the time moments of operation completion C';. j € O
and job beginning S;, j € O in time O(o) on the sequential machine using the
recurrent formula

S; = max{S; + p;. Sk + px }.J € O. (9)

where an operation i is a direct technological predecessor of the operation j € O
and an operation & is a directed machine predecessor of the operation j € O.
The determination procedure of S;, j € O from the recurrent formula (9) should
be initiated by an assignment 5; = 0 for those operations j which do not possess
any technological or machine predecessors. Next, in each iteration an operation
j has to be chosen for which:

1. the execution beginning moment S; has not been determined yet. and

2. these moments were determined for all its direct technological and machine
predecessors: for such an operation j the execution beginning moment can
be determined from (9).

It is easy to observe that the order of determining S; times correspounds to the
index of the vertex of the G(7) graph connected with a j operation after the topo-
logical sorting of this graph. The method mentioned above is in fact a simplistic
sequential topological sort algorithm without indexing of operations (vertices
of the graph). If we add an element of indexing vertices to this algorithm, for
which we calculate §; value. we obtain a sequence which is the topological or-
der of vertices of the graph G(7). Now. we define layers of the graph collecting
vertices (i.e.. operations) for which we can calculate S; in parallel. as we have
calculated the starting times for all machines and technological predecessors of
the operations in the layer.

Definition 1. The layer of the graph G(7) is a maximal (due to the number of
vertices) subsequence of the sequence of vertices ordered by the topological sort
algorithm, such that there are no arcs between vertices of this subsequence.

We will need this definition in the next paragraph.
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4 Parallel Determination of the Cost Function

Theorem 1. For a fired feasible operations m order for the J||Cyax problem,
the number of layers from Definition 1 of the G(n) graph can be calculated in

O(log? o) time on the CREW PRAMs with o(

) Processors.

Proof. Here we use the G*(7) graph with an additional vertex 0. Let B = [b;;]
be an incidence matrix for the G*(m) Uraph i.e.. b;; = 1. if there is an arc 1, j
in the G*(w) graph, otherwise b;; = 0.i.j =0.1.2..... o. The proof is given in
three steps.

1. Let us calculate the longest paths (in the sense of the number of vertices) in
G*(m). We can use the parallel Bellman-Ford algorithm (see [1]) — we need
the time O(log” 0) and CREW PRAMIs with O(0?/log o) processors.

2. We sort distances from the 0 vertex to each vertex in an increasing or-
der. Their indexes. after having been sorted. correspond to the topological
order of vertices. This takes the time O(logo) and CREW PRAMs with
0+ 1 = O(o) processors. using the parallel mergesort algorithim. We obtain
a sequence Topoli]. i =0.1.2..... 0. The value of Topo[o] equals d.

We can also use a tree-based parallel maximum determination algorithm in Step
2. instead of mergesort. However. the most time- and processor-consuiing is

Step 1. We need the time O(log® o) and the number of processors O (131:0) of
the CREW PRAAIs. ]

the value of cost function can be determined in O(d) time on O(o/d)-processor
CREW PRAMs, where d is the number of layers of the graph G(w).

Proof. Let I',. k = 1.2.....d. be the number of calculations of the operations
finishing moments Ciat = 1. - o in the k-th laver. Certainly Zf_ﬂ I =0
Let p be the number of processors used. The time of computations in a single
layer & after having divided calculations into V;—,” groups. each group containing
(at most) p elements. is [%“ (the last group cannot be full). Therefore. the total

computation time in all d layvers equals Z,‘_l f!“* 1< EL;("—,} +1)=2+d. To

obtain the time of computations O(d)we should use p = O(§) processors. x

This theorem provides a cost-optimal method of parallel calculation of the cost
function value for the job shop problem with the makespan criterion.

5 The GPU Algorithm

The main part of our parallel implementation of goal function calculation for the
job shop problem constitutes calculating of the longest path between all vertices
in graph. This part was parallelized with CUDA and OpenCL and ran on NVidia
and ATI GPUs.
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i __global__ void PathsKermel(comst int o, int +graph, const int 1)
¢
| int x = threadIdx.x;

int y = blockIdx.x;

int k - i;

int yXwidth - y r (o+1);

- int d¥toX = graph[yXwidth - x];
j int dYtoK = graph[yXwidth - X];
I int dKtoX - graph(k+(o+:) - x];

B int indirectDistance = dYtoK - dKtoX;
int max 3
int tmp = @3

" iF(dYtoK '=( and dKtoX -.)
v

- tmp - indirectDistance;
if(max < tmp)

2 max = tmp;

2 }

s if(dYtoX < max)

2 {
graph[yXwidth - x] - max;

. }

» )

Fig. 1. CUDA kernel code

Kernel code (Figure 1 CUDA kernel code) is invoked o times where o is
the number of nodes in the graph. At the A-th iteration. the kernel computes
direct and the indirect distance between everv pair of nodes in graph through
node . The larger of the two distances is written back to the distance matrix.
The final distance matrix reflects the lengths of the longest paths between each
pair of nodes in the graph. The inputs of the GPU kernel are the number of
the graph nodes. the graph distance matrix and the iteration number. Figure
2 shows OpenCL implementation of computing the longest path between each
pair of nodes in a graph.

6 Computational Experiments

The proposed parallel algorithm of goal function calculation for the job shop
problem was coded in CUDA and OpenCL and tested on GPU servers in the
Wroclaw Centre for Networking and Supercomputing. The algorithim was tested
on the set of benchmark problem instances taken from Lawrence [4] and Tail-
lard [7]. We run our algorithm on three different GPUs:

— NVidia GTX4130 with 480 parallel processor cores and 1.4 GHz clock rate.
— ATI Radeon HD5870 with 20 compute units and 850 MHz clock rate,
— ATI Radeon HD5/970 with 20 compute units and 725 NMHz clock rate.
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Lt 3 5 ppm e, Fo e gavmarh

clGraph - clCreateBuffer(context, CL_MEM_READ_WRITE,
dataSize, HULL, HULL);

cl_mem

clEnqueueWriteBuffer (commands, clGraph,
CL_TRUE, =, dataSize,
graph, ¢, NULL, HULL);

~ size_t local ol
size_t global = (o-1)=(0*1);
clSetKernelArg(kernel, 7, sizeof(int), o);
. clSetKernelArg(kernel, :, =zizeoI(cl_mem), zclGraph);
for (int iter-.; iter <= size+l; iter++)
{
For{int i=0; i<=q; ++i)
{

1 clSetKernelArg(kernel, , zizecf(int), %i);

e Fld A et

clEngqueuelDRangeKernel (commands, kernel, 1, HULL,
zglobal, Zlocal, 0, HULL, NULL);

2 clFinish(commands);
: }
i}

e o 5L - 3 man hE JeyioE

i clEnqueueReadBuffer(commaﬁds, clGraph, CL_TRUE, =, dataSize,
ir graph, &, MNULL, HULL );

Fig. 2. OpenCL code

This GPUs are installed in servers with Intel Core i7 CPU with 3.20 GHz
clock rate working under G4-bit GNU/Linux Ubuntu 10.10 operating system.
The proposed algorithm uses 0® processors for lavers determination (basing on
Theorem 1. scaled to the time O(ologo)). The sequential algorithm (based on
the method presented in the Section 3) using one CPU processor has been coded
with the aim of determining the absolute speedup value which can be obtained
with a parallel algorithm.

Our CUDA (OpenCL) implementation of the parallel goal function calculation
for the job shop problem uses o blocks (work groups) with o threads (work
items). The maximum work item size per dimension for HD5870 and HD5970 is
equal to 256. Therefore we could ran our parallel algorithm on ATI GPUs only
for Lawrence test instances (up to 255 operations). The maximum number of
threads per block for NVidia GTX480 GPU is equal to 1024. On this GPU we can
calculate a goal function for the job shop problem with up to 1024 operations.

Figures 3 and 4 show the comparison of computation time for sequential
(run on CPU) and parallel algorithm coded in CUDA/OpenCL and run on
NVidia/ATI GPUs. The measured time contains the time needed for data trans-
fer between CPU and GPU. As shown in Figure 3 the considered algorithm coded
in CUDA is faster than the algorithm coded in OpenCL for all Lawrence test
instances. The algorithm coded in OpenCL is faster than the algorithm for CPU
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018 Y T T

CPU ——
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Fig. 3. Computation time for Lawrence test instances £

for the number of operations grater than 225. The comparison of computation
time for OpenCL code on different hardware shows that running the same code
on Nvidia GTX 480 take less time than on used ATI GPUs. Also. the compu-
tation time for ATI Radeon HDA870 is less than ATI Radeon HD5970. This
situation is caused by clock rate for GPU hardware used for tests evaluation.

e e L o
CPU ——

GTX 480 GUDA ---x--- __

GTX 480 OpenCL & -- ,

a

25 |

i

1

20 |
/

tis]
I

300 a00 500 500 700 800 300 1000
Fig. 4. Computation time for Taillard test instances

Figure 5 and Table 1 report the comparison of speedup obtained for CUDA
and OpenCL implementation on NVidia GTX480 GPU. The particular columus

in Table 1 denote:
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Fig. 5. Speedup for laillard test instances

Table 1. Speedup for CCUDA and OpenCL impementation obtained on NVidia
GTXA80 GPU

problem 0 SOpenCL SCUDA
tail01-10 225 1.97731 8.25768
taill1-20 300 3.10649 12.6401
tail21-30 100 5.22559 16.0617
tail31-10 450 7.10766 19.855
tail41-50 600 9.7754 22.8953
tail51-60 750 15.9346 27.0535
tail61-70 1000 19.6828 25.9972

— o mumber of operations in considered job shop problem instance.

— Sopenct. — speedup for OpenCL implementation (average for each 10 in-
stances).

— scrpa — speedup for CUDA implementation (average for each 10 instances).

The obtained results show that parallel goal function computation for the job
shop problem on GPU results in shorter calculation time for the number of
operations greater than 225. The counsidered algorithm coded in CUDA allow
to obtain greater speedup than for the algorithm coded in OpenCL for all
tested benchmarks. Our parallel algorithm reached 25x speedup for CUDA im-
plementation and 19x speedup for OpenCL implementation on NVidia GTX480
GPU.
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Conclusions

The algorithm proposed in this paper can be used for computation acceleration in
metaheurisics solving the job shop problem. The calculation time of goal function

in

algorithms which solve the job shop problem take even 90% of the whole

algorithm computation time. The use of parallel algorithin for goal function
calculation might result in significant decreasing of algorithin execution time for

solving the job shop problem.
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