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Abstract. In this work we examine a model of flexible job shop prob-
lem in which for a given operation there is a possibility of a choice of
the machine on which this operation will be carried out. This problem
is a generalization of the classic job shop problem. We present a tabu
search algorithm in which "a golf neighborhood™ was applied. Because
it is a huge neighborhood. the concurrent programming tools based on
GPU platform were thus used to its searching. The computational re-
sults indicate that by acceleration of computations with the utilization
of GPU one obtains very good values of a speedup. Computational ex-
periments executed on benchmark instances show the efficiency of this
approach.

1 Introduction

There is a set of tasks and machines of various types given. A flexible job shop
problem (FJS problem in short) consists in assigning tasks to adequate ma-
chines and determining an optimal sequence of its execution. Machines of the
same tvpe. that is executing only one type of operation. create production nests.
Tasks’ operations must be executed on adequate machines in a fixed order called
a production itinerary. For each operation there is created a nest in which this
operation will be carried out. Thus. the times of execution of operations are
given.

FJS problem consists in assigning operations to machines and defining the
sequence of their execution in order to minimize the time of finishing tasks’
completion (Cyuy). The problem presented in this work also belongs to the
strongly NP -hard class.

Although the exact algorithms based on a disjunctive graph representation of
the solution have heen developed (see Adrabinski and Wodecki [1], Pinedo =
they are not effective for instances with more than 20 jobs and 10 machines. From
metaheuristic algorithms. Nowicki and Smutnicki [7] proposed a tabu search
approach using block properties for the special case of the considered problem
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2 Flexible Job Shop Problem

A flexible job shop problem (FJSP). also called a aeneral job shop problem with
parallel machines. can be formulated as follows. Let 7 = 1 G — n} be a set
of jobs which have to be excented on machines from the set M ={1.2..... m}.
There exists a partition of the ser of machines into rypes. Le. subsets of machines
with the same functional properties. A job constitutes a sequence of some opera-
tions. Each operation has to be executed on an adequate type of machine (nest)
within a fixed time. The problem consists in allocating the jobs to machines ot an
adequate type and scheduling of jobs execution deterinination on each machine
to minimize a total jobs™ finishing time (C\.x ).

Lot O = {1.2.....0} be the set of all operations. This set can be partitioned
into sequences which correspond to jobs where the job j = T is a sequence of o,
operations which have to be exccuted in an order on dedicared machines.

The sot of machines M = {1.2.....m} cau be partitioned into g subsets
of the same tyvpe (nests) where i-th tvpe M’ An operation ¢ = O has to be
executed on the machines type (). Le. on one of the machines from the set
(nest) M in the time p,, where j = M Let

OF = {re O: ulr) =k}

)

he a set of operations executed in the A-th nest (A = 1.2..... ¢ ). A sequence of

operations sets being a partition of O (pair-disjoint)
S -
we call an assignment of operations from the set O to machines from the set M.
For an assignment of operation Q. let 7(Q) = (71( Q). 720 Q). v Tin | Q)) where
71(Q) is a permutation of operations executed on a machine M. Anyv feasible
solution of the FISP is a pair (Q. 7(Q)) where Q is an assigument of operations to
machines and 7(Q) is a permutations concatenation determining the operations

execution sequence which are assigned to each machine (see 3])-

3 Solution Method

There is an exponential number of possible jobs to machines assigumnents, due to
the number of operations. Each feasible assignment generates a NP-hard problew
(job shop) whose solution consists in determining an optimal johs execution order
on machines. One has to solve an exponential munber of NP-hard problems.
Therefore. we will apply an approximate algorithin based on the tabu scarch

method. The main element of this approach is a neighborhood — subsets of all
feasible solutions sot. generated from the current solution by transformations
called moves. By searching a neighborhood we choose an element with the low-
est cost function value. which we take as a new current solution in the next
iteration of the algorithm. It is possible to generate another solution from the
fixed solutiont by executing a move which consists i

1. moving (transterring) an operation from one machine into another

machine in the same nest (of the same type). or
2. changing operations execution order on machines.
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L Let © = (Q.7(Q)) be a feasible solution. where Q= [QLQ%....Q" is an
assignment of operations to machines. o; is a number of operations executed on
"2 machine 1, (l.e. 7(Q) = (FHQ).I-_:{Q).....TF,,;{Q}} is a concatenation of m
permutations). A permutation 7;(Q) determines an order of operations from the
. et Q' which have to be executed on the machine 1M;.

?‘___3.1 Transfer Type Moves
s By ) (k.[) we define a transfer type move (t-move) which consist in moving of an
~ aperation from the position k in a permutation 7; into position { in a permutation
(k). Execution of the move fj(ﬁ.'.!) generates from @ = (Q.7) a new solution
& = (Q'.7'). Its computational complexity is O(n).

If 7 is a t-move. then we define a solution generated from © by execution of
she  move by 7(©). It is possible that the solution 7(@) is not feasible.
Let @ be a feasible solution. The set

T©) = {tj(k.1): ke Q' and ! £ Q’}

cludes all t-moves which transfers operations from a machine A/; into a ma-

hine M and
T(©)=1%7;7,©)

ludes all f-moves for the solution @. The number of elements of this set has
upper bound O(gm?o?).

Insert Type Moves

order to simplify the problem. let us assumne that a permutation 7 = (7(1).

1 ....7(t)) determines an operations” execution order on a machine.

* Insert type move .f'? (i-move) is moving an element w(k) into the position
generating a permutation ij (7) = 7. The number of all such moves (for a

B srmined machines) is #(t — 1). For a fixed feasible solution ©. let i (@) be

& set of all i-moves for the machine M. < M and let

1(©) =YL, L)

a set of all i-mowves on all machines.

Graph Models

my feasible solution O = (Q.7(Q)) determining the operations” execution se-
pence on each machine) of the FISP can be presented as a directed graph
with weighted vertices G(O) = (V.R U E(O)) where V is a set of vertices and
ER _E(O) is aset of arcs. with:

BV =0U {s.c}. where s and ¢ are additional operations which represent
& start” and “finish’. respectively. A vertex v < Y possesses two attributes:

— M) a number of machines on which an operation v has to be execured.
— e a weight of vertex which equals the time of operation ¢ = €
execution on the assigned machine A(r) (ps = pe = 0).
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2) A set R includes ares which connect successive operations of the job. ares
from vertex s to the first operation of each job and ares from the last oper-
ation of each job to vertex c.

3) Ares from the set £(@) connect operaftions execute « on the same machine.

Ares from the set R determine the operations exceution sequence inside jobs
and arcs from the set £(7) the operations execution sequence on each machiue.

Remark 1. 4 pair @ = (Q.7(Q)) is a feasible solution for the FISP if and
only if the graph G(©) docs not include cycles.

3.4 Golf Neighborhood

A transfer tvpe move is like a long shot in golf: it moves an operation into
other machines. In turn. an insert tvpe move makes only a little modification of
operation sequence on machines. An inspiration to these rescarches was a paper
of Bozejko and Wodecki 2| which considered multimoves.

Let © be a feasible solution and let T(@) be a set of all #-moces. We consider
the move t' (.i. [y = T(@). It transfers an operation from rhe position A-th on the
machine 1.( into a pu»lrlun [-th on the machine M ,. This move generates the
solution @' = ti (k. )(O). The set Z(Q') includes all /-moves connected with a
solution @' and Z;(@') - i-moves defined on operations executed on the machine
M;. Let i; € Z;(©') be an i-move. Its execution generates a new solution e =
i$(6"). The transformation which generates a s ution @ from the @ we call an
it-multimove. It constitutes a product of the t-move t'(k. 1) and i-move 7. We
will denote this move shortly as iot) (k. /). Theretore Q= ipeti (k. )(@).

By ZoT (@) we denote a set of all .-'f multimoves determined ttu a solution 6.
The golf neighborhood @ is the ser

N(O) ={A@): AN=I:-T(6)}. (1)

In the paper Bozejko ot al. 3] a so-called elimination criterion was proved. It
allows to eliminate all i-moces and t-moves. which generate nnfeasible solutions.
Moreover. multimoves are generating solutious. for which the cost function value
is not less than (@) are also eliminated. Such a determined golt neighbor-
hood will be applied to the tabu search algorith,

3.5 Neighborhood Determination

Execution of a f-move can lead to a non-feasible solution. i.e.. a graph connected
with this solution can have a cvele. Therefore. checking feasibility equals checking
if a graph has a cvele.

Let @ = (Q. ) be a feasible solution. We consider two machines M, and 1/
from the same nest. A permutation 7, determines a processing order of operarions
from the set @' on the machine M, and 7, a processing order of operations
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from the set Q7. For an operation 7 (k) € Q' we define two parameters connected

with paths in the graph G(€). The frst parameter is

1. if there is no path C(7;(v). mi(k)) Ye=1.2.....9j.
k)= 1 — max {there is a path C(m;(r). mi(k))}. otherwise.
1<r<op,
Thus. there is no path to the operation (vertex) =i (k) from any of the operations
placed in the permutation 7, in positions 7 (k). (k) + 1.0 0.
The second parameter is

1 + o;. if there is no path C'(7; (). o)) V= L Qe 0j
PiR) =41 = in {there is a path C(mi(k).7;(v))}. otherwise. (3)

nk<rse,

From the definition formulated above it follows that in the graph there is no path
from a vertex 7 (k) to any operation placed in positions 7); (k)15 (R )ALy pi(k)
in the permutation 7.

Theorems for characterizing a t-moves whose execution generates an unfeasi-
ble solutions can be found in our previous work [3]. The structure of assumptions
allows an easy implementation in the parallel computing environment. such as
GPUs. Basically. in order to check solution feasibilitv the information about the
longest paths between all vertexes in oraph connected with flexible job shop
problem solution are needed. Caleulating the longest paths between all vertexes
in graph (Floyd Warshall algorithm) with sequential algorithm takes the time
O(0%). Parallel algorithm using o® processors calculate the longest paths be-
tween all vertexes in graph with the time O(o). This algorithm can be easily
implemented in the parallel computation environment such as GPU.

4 Computational Experiments

Proposed algorithm for the floxible job shop problem was coded in C++ and
C(CUDA) and run on HP workstation with CPU and NVIDIA GTX480 GPU.
Algorithms were tested on the set of benchmark problem instances taken from
Brandimarte 5. Table 1 shows computational times for parallelized part of golf
neighborhood determination procedure. Particular columns in Table 1 denote:

e p - number of GPU threads.

e t. - computational time for sequential algorithim on CPU.

e t, - computational time for parallel algorithm on GPU.

e s - speedup. A measured speedup increases with a number of processors (in
all cases it is greater than one) but still quite small in comparison with a number
of used GPU processors. There are two reasons for a relative small speedup in
considered parallel GPU algorithm. Firstly. it is connected with the time needed
for transferring data between CPU and GPU. This is a well known bottleneck
of GPU computations. The second reason is an unoptimized access to the GPU
memory during computation for this particular implementation.
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Table 1. Speedup tor parallelized part of algorithm

problem Iz tems f s =
MkO1 5 5.9N876 1.329.19 1.35325
Mk02 ite T.009953 L6120 1.591 13
NTkO:3 150 154.99 17,5004 07740
AkO 90) D49 RGUT T | St J.N8N13
AkO5 LOG 51.3419 9.52330 5.39115
Mk06 150 150.0147 165776 9.05119
MkOT 100 13.0.13 N TOT22 192N
AkOx 225 517.379 25543 20,1326
Mk09 240 628,237 DT.AN0N 2204011
MkI0 210 637,614 2706397 23.0649

A parallel speedup of the algorithm is a measure of the success of the paralleliza-
tion process. All algorithins contain some parts that can be parallelized and some
parts which cannot nudergo this process. The time spent in the parallelized parts
of the algorithm is reduced by using inereasing munber of processors. but the
sequential parts remain the same. Finallv, the execution rime of the algorithm is
dominated by the time taken to compure the sequenrial parr. which is an npper
limit of the expected speedup. This effect is known as Amdahl's law and can
be tormulated as (6] s = T ;J+Il = — where f,,,. is parallel fraction of the
code and p is the number of processors,

We compare a theoretical speedup (caleulated with Amdahl’s law) of proposed
tabu search algorithm with an experimentally measured speedup. Table 2 shows
our results. Particular columns in Table 2 denote:

o fuur - parallel fraction of the metaheuristic,

e 5 - theoretical speedup caleulated with Awdahl'™s Taw.

e s, - speedup measured experimentally,
For simall values of the parallel fraction of the code (NMk02, NMkod and NkO6) the
difference between theoretical and experimentally measured speedup is small.

Table 2. labu search algorithim speedup

problem P Jors t<|s] bpis S s,
AMkO1 575) 0.7009S ().85.133 O0.7T1ITS 3.20757 1.19523
k02 o8 0.20656 343712 3.09 108 125171 1.11162
Mk03 150 0.00118 17.10%6 3.2338 9.539.15 5.31832
MkO 90 (0.32281 1.2529.] 7.65297 [, 168092 1.20907
MkO5 106 ().8895.1 577173 [.59:326 N 1139 3.62254
MkO6 150 0.0206 1 247.16 251661 1.02003 0.97051
MkOT 100 ().80061 537627 [L9TOAT 182164 2.T2812
MEOS 225 (.97586 53,0176 b AP | 35,1208 1:3.9986
MEkOY 240 (.5:1383 714503 144714 {1.26:2:11 211165
MK10 240 0.78271 S1A627 20,2544 L3415 F.02188
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5 GPU Implementation Details

In our tabu search algorithm for flexible job shop problem we adopt Floyd-
Warshall algorithm for computing the longest path between each pair of nodes
in a graph. The main idea of the algorithm is as follows. Find the longest path

i FindPathsOnGPU(: =t int o, int -graph)
in+ - graphDev;
+ dataSize (o J=lo-1)r = tint s

. 5 size (.nt)(log((ivurin)e) logl )
dim3 threads(oc
dim3d blocks(o "):
cudaMalloc( (vwii--) graphDev, dataSize);
cudaMemcpy ( graphDev, graph, dataSize, cudaMemcpyHostToDevice) ;
: (zn: iter ' iter size:.; iter)
{

38 5 S dl S S K

{
Pathskernel . -blocks, threads - (o, graphDev, k);

cudaThreadSynchronize();

}
}
cudaMemepy( graph, graphDev, data3ize, cudaMemcpyDeviceToHost) ;
cudaFree(graphDev);

Fig. 1. CUDA implementation of computing the longest path in a graph

__global__

{

-4 PathsKernel(::nst zrt o, 1mt -graph, comst inn 1)

s % threadIdx.x;

o8 e blockIdx.x;

ink & i35

nt yXwidth - y - (o7 .);

157 dYtoX - graph[yXwidth - x]:

int dYtok graph[yXwidth - k];

in- d¥toX  graph(k=(o-.) - x];

:nt indirectDistance  dYtek - dKtoX;
int max ;

1t tmp 3

v1 (dYtoK and dKtoX ‘- )

1
tmp indirectDistance;
zrimax  tmp)

max tmp;
}
:{d¥YtoX . max)
{
graph[yXwidth - x] -~ max;
}

Fig. 2. CUDA kernel
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hetween node ¢ and ¢, containing the node ¢y It consist of a sub-path from ¢,
i " . . R
to tp and a sub-path ¢ to ¢, This idea can be formulared as follows: d;} =

ik 1]

k=11 gth—1 (=1, ko ;
max{dtj Ldy T = d b owhere )" is the longest path from ¢, to ¢ such
that all intermediate nodes on the path are i set ... rp. Fienre 1 shows

CUDA implementation of of computing the longest path between each pair of

nodes. The CUDA kernel (Figure 2) is invoked o times. where o is the mumber
of nodes in the graph. At the A-th iteration. the kernel computes rwo values
for every pair of nodes in the graph. The direet distance berween thenn and the
indirect distance through node . The larger of the two distances s written
back to the distance matrix. The final distance matrix refleers the lengths of the
longest paths betweew cacl pair of nodes. The iupurs of the CUDA kernel are
the number of the graph nodes. path distance matrix and the iteration (step)
munber.

6 Conclusions

We present the tabu scarch based algorithm with the colt neighborhood tor the
flexible job shop problem. In the golf neighborhood generation procedure parallel
GPU acceleration has been applied. which allows to obrain an absolute speedup
(in comparison to CPU) for cach tested algorith bigeer thau 1. and 1 extreme
cases even the 14th times bigger.
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