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Abstract. In this paper we consider a double-level metaheuristic op-
timization algorithm. The algorithm proposed here includes two major
modnles: the machine selection module which is executed sequentially,
and the operation scheduling module executed in parallel. On cach level a
metaheuristic algorithm is used. so we call this method meta® heuristics.
We carry out computational experiment using Graphics Processing Units
(GPU). It was possible to obtain new the best known solutions for the
benchmark instances from the literalure.

1 Introduction

The flexible job shop problem which is considered here constitutes a generaliza-
tion of the classic job shop problem where operations have to be execuled on one
machine from a set of dedicated machines. Then, as a job shop problem it also
belongs to the strongly NP-hard class. Exact algorithms based on a disjunctive -
graph representation of the solution have been developed (see Pinedo [9]) but
they are not effective for instances with more than 20 jobs and 10 machines.
However, many approximate algorithms, mainly metaheuristic, have been pro-
posed. Dauzére-Pérés and Pauli [3] used the tabu search approach extending the
disjunctive graph representation for the classic job shop problem to take into con-
sideration assigning operations to machines. Also Mastrolilli and Gambardella
[6] proposed a tabu search procedure with effective neighborhood functions for
the flexible job shop problem. Many authors have proposed a method of as-
signing operations to machines and then determining sequence of operations on
each machines. Such an approach is followed by Brandimarte [2]. Also genctic
approaches have been adopted to solve the flexible job shop problem (Pezzella et
al. [8]). Gao et al. [4] proposed hybrid genetic and variable neighborhood descent
algorithm for this problem. In this paper we proposc a parallel double-level tabu
search metahenristic for the flexible job shop problem. We apply INSA [7] and
TSAB [7] algorithm on the second level of parallelism.
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2 Flexible Job Shop Problem

The flexible job shop problem (FJSP). also called the general job shop prob-

lem with parallel machines, can be formulated as follows. Let 7 = {1.2.....n}
be a set of jobs which have to be executed on machines from the set M =
{1,2,...,m}. There exists a partition of the set of machines into fypes, i.e.

subsets of machines with the same functional properties. A job constitutes a
sequence of some operations. Each operation has to be executed on an adequate
type of machine in a fixed time. The problem consists in the jobs allocation to
machines from the adequate type and the schedule of jobs execution determi-
nation on each machine to minimize the total jobs finishing time. The following
constrains have to be fulfilled:

(i) each job has to be executed on only one machine of a determined type in
each moment of time,
(41) machines must not execute more than one job in each moment of time,
(#4) there are no idle times (i.c. the job execution must not be broken),
(7w) the technological order has to be obeved.

Let @ = {1,2....,0} be the sct of all operations. This set can be partitioned
into sequence w hich corr espond to jobs where the job j € J is a sequence of o,
operations which have to be ezecut-ed in an order on dedicated machines (i.c.
in so-called technological order). Operations are indexed by numbers (I;_; +
l,....0j—1 4+ 0;) where l; = 371 0; is the number of operations of the first j
jobs,F =1 % v oy wWhere Iy =0808 6 =Y 0p:

The set of machines M = {1,2.....m} can be partitioned into g subsets
of the same type where i-th (i = 1,2...., .q) type M includes m; machines
which are indexed by numbers (#; 1 + 1,....¢;_1 + m;). where {; = Z}:J m;
is the number of machines in the first ¢ types. i = 1.2.....g9. where {j = 0 and
m =" my.

An operation v € O has to be executed on the machines "_'*\'I)L ;1(:." i €. OIl oLe
of the machines from the set MH#(V) in the time p, 4 where j € M)

Let ©F = Jpe @ ;f[ )} = &k} bea set of {)per;itwm executed in the

k-’fh (k. = 1,2,....q) set of machines types. A scquence of operations sets
i . iy i L

= N ;. R | G - 5 e B e R

Q" N O’[‘ 0, 7 %£.3,% } = fp_1+ l o1+ 2., tr_1 +myg we call an assign-

et Uf operations to machines in the i-th set of machines tvpes. In a special
case a machine can execute no operations and then a set of operations assigned
to execute by this machine is an empty set.

A sequence @ = [QY, Q2. ..., Q9], where Q* (i = 1,2,....q is an assignment
in the i-th set of machines types we call an assignment of operations of the set
O o machines from the set M.

If the assignment of operations to machines has been carried out. then the
optimal schedule of operations execution determination (including a sequence of
operations execution on machines) boils down to solving the classie scheduling
problem, it means the job shop problem.
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Let K = (K, Ks, .... K;,) be a sequence of sets where K; € 29" 1=1,2,...m
(in particular case clements of this sequence can constitute empty sets). By K
we denote the set of all such sequences. The number of elements of the set K 1s
ol . 9l0%| . . 9l0%

If Q is an assignment of operations to machines then @ € K (of course, the
set K includes also sequences which are not feasible; that is such sequences do
not coustitute assignments of operations to machines).

For any scquence of sets K = (K, Ks. ... K,,) (K € K) by IT;(K) we denote
the set of all permutations of elements from K;. Thereafter, let 7(K) = (m (K,
72 (K). ..., T (K)) be a concatenation m sequences (permutations), where m;( K') €
IT;(K). Therefore n(K) € H(K) = IL(K) x I5(K)X, ... [, (K). Il is easy
to observe that if K = (K, Ko, .... {,;) is an assignment of operations to ma-
chines then the set 7;(K)(i = 1,2.....m) includes all permutations (possible se-
quences of execution) of operations [rom the set K; on the machinei. Further, let
¢ = {(K.#n(K)): K e K N w(K) e H(K)}. Any feasible solution of the
FJSP is a pair (Q. 7(Q)) € ® where @ is an assignment of operations to machines
and 7(@Q) is a permutations concatenation determining the operafions execution
sequence which are assigned the each machine fulfilling constrains (4-iv).

By @° we denote a set of feasible solutions for the FISP. Of course ¢° C 2.

3 Graph Representation

Any feasible solution @ = (Q.7(Q)) € &° (where Q is an assignment of oper-
ations to machines and #(Q) determines the operations exccution sequence on
cach machine) of the FISP can be shown as a directed graph with weighted
vertexes G(O) = (V. RUE(D)) where V is a set of vertexes and a RUE(O) is a
set of arcs. whereas:

1} V = QU {s.c}, where s and ¢ are additional (ficlitious) operations which
represents ‘start’ and ‘finish’, respectively. A vertex v € V') {5, ¢} has two
attributes:

A(v) — a munber of machine on which an operation v € O has to be
executed.
— Pua(e) & weight of the vertex which equals to the time of operation
r € @ execution on the assigned machine A(v).
Weights of additional vertexes (ps = p. = 0).
n Jo;—1

2} = .Ul U (.Fj_'i f—'!..ﬂr_-,f-—l =+ i+ 1:1} L {(S:Ij_1 + 1:1} o {{Ej_] + I."};,':{_‘.]}] .

=1

A sel R mcludes arcs which connect successive operations of the job, arcs
from the vertex s to the first operation of cach job and ares from the last
operation of each job to the vertex ¢

m

. 0¥ -1 '
) €@ =U U {(m()mi+1)}.

k=1 =1
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Tt is easy to observe, that arcs from the set £(@) connect operations exccuted
on the same machine (mp is a permutation of operations executed on the
machine My, that is operations from the set OF).

Ares from the sel R determine the operations execution sequence inside jobs
(technological order) and arcs from the set £(r) the operations execution se-
quence on cach machine.

Remark 1. A pair © = (Q.7(Q)) € ¢ is a feasible solution for the FJSP if
and only if G(©) does not includes cycles.

Let @ = (Q.7(Q)) € &° be a feasible solution for the FISP and let G(&) be
a graph connected with it. A sequence of vertexes (vy.vs...., 1) of the graph
G(@) such, that (v;,v;01) e RUE@) fori=1,2,..., k—1. we call a path from
the vertex v to ve. By C(v, u) we denote a longest path (called a critical path)
in the graph G(@) from the vertex v to u (v,u £ V) and by L(v, u) we denote a
length (sum of vertexes weights) of this path.

It is easy to notice that the time of all operations execution Ciax(©) related
with the assignment of operations @ and schedule w(Q) equals to the length
L(s.c) of the critical path C(s,¢) in the graph G(@). A solutions of the FIJSP
boils down to determining a feasible solution @ = (Q. x(Q)) € &° for which the
graph connected with this solution G(@) has the shortest critical path. that is
it minimizes L(s. ¢).

e =(Q,7m(Q)) € €° is a feasible solutionu for the FISP then Q = :Ql. AL
..., Q9] is an assignment of operations to machines and #(Q) = (7 (Q). m2(Q),
T (@) is a concatenation of m permutations, where a permutation w;(Q)
determines a sequence of operations from the set Q' which have to be exccuted
on the machine M; (i =1,2,...,m).

Let C(s,¢) = (8,v1,¥9,..., 0w, ¢}, v; € O (1 < i < w) be a critical path in the
graph G(@) from the starting vertex s to the final vertex c. This path can be
divided into subsequences of vertexes B = [B'. B%,..., B7| called blocks in the
permutations on the critical path C'(s, ¢} (Grabowski [5]) where

(a) a block is a subsequence of vertexes [rom the critical path including succes-
sive operations executed directly one after other,

(b) a block includes operations executed on the same machine,

(¢) a product of any two blocks 1s an empty set.

(d) a block is a maximal (due to including) subsct of operations from the critical
path fulfilling constrains (a)-(¢).

In the further part only these blocks for which |B¥| > 1 will be cousidered, i.e.
non-empty blocks.
If (k=1,2,....7) is a block on the machine Af; (i = 1,2, ...,m) from the type
of machines t (t = 1.2, ....¢) then we will denote it as follows:
B* = (milla™)imla® Yooy m(B5 B miB™);

where 1 < a® < bF < |5
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Operations w(a®) and 7(b"*) in the block B* are called the first and the last,
respectively. In turn a block without the first and the last operation we call an
internal block.

The change of operations order in any block does not generate the solution with
less value of the cost funetion (see Grabowski [5]). At least one operation from
any block should be moved before the first or after the last operation of this block
to generate the solution (graph) with smaller weight of the critical path. We use
this property to reduce the neighborhood size, i.e. do not generate solutions with
greater values (comparing the the current solution) of the cost function.

4 Proposed Algorithm

The algorithm proposed here includes two major modules: the machine selection
module and the operation scheduling module,
Machine selection module. This module is based on the tabu search approach
and it works sequentially. It helps an operation to select one of the parallel
machine from the set of machine tyvpes to process it.
Operation scheduling module. This module is used to schedule the sequence
and the timing of all operations assigned to each machine from the center. It has
to solve classic job shop problems after having assigned operations to machines.
Two approaches: constructive INSA [7] and TSAB [7] (tabu scarch) were used
on this level.

On each level a metaheuristic algorithm is used. so we call this method
meta’heuristics (meta-square-heuristics).

Algorithm 1. Tabu Search Based Meta“heuristics (M~h)

OF — the best known assignment:

7w(Q*) operation sequence corresponding to the best known assignment Qx;

Step 0. Find start assignment of operations on machines Q and corresponding
operation sequence w(Q"):

Step 1. Generate the neighborhood A(Q) of the current assignment Q.

Exclude from N(Q) elements from tabu list T

Step 2. Divide N(Q) into k = —\{}Q—'l groups:
Each group consist of at most p elements:
Step 3. For each group k find (using p processors) operation sequence w())
corresponding to the assignment ) € A (Q) and valuc
of the makespan Cpu (Y, 7(V)):
Step 4. Find assignment z € N(Q) such that
5 =0 7[2}} — min{cma.r{y- W[-})j o= ﬂ(r)}
Include z in the list T; @ = Z; n(Q) = w(Z):
Step 6. if (Stop condition is true) then Stop:

(Z): & =-Z;

else go to Step 1;
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In the second step of the algorithm a neighborhood N(Q) is divided into dis-
joint sets U?:l NN = N0 ﬂf_] N;(Q) = (. For each group k values of the
makespan arc calculated using p GPU processors. Number of processors used
in the third step depends on the neighborhood size. In the Step 3 the value of
makespan corresponding to the assignment is calculated by means of INSA or
TSAB algorithms. Tabu list 7 stores couples (v. k) where v is the position in
the assignment vector and k is the machine to which v is assigned before the
move. The first assignment is generated by the search for the global minimum
in the processing time table taken from [8].

5 Computational Results

The parallel metaheuristic (M?h) algorithm for the flexible job shop problem
was coded in C (CUDA) for GPU, ran on the Tesla C870 GPU (512 GFLOPS)
with 128 streaming processors cores and tested on the benchmark problems from
literaturc. The GPU was installed on the Hewlett-Packard server based on 2
Dual-Core AMD 1 GHz Opteron processors with 1 MB cache memory and 8 GB
RAM working under 64-bit Linux Debian 5.0 operating svstem. We compare our
results with results obtained by other authors using a set of 10 problems from
Brandimarte [2] and a set of 21 problems from Barnes and Chambers [1].

Table 1. Experimental results of the M*h for Brandimarte [2] instances. The INSA
algorithm was used in the operation scheduling module.

problem X om Flex. 0 ts [g] £y [5] speedup s
MkO1 10 x 6 2.09 33 133.61 10.79 12.38
Mk(2 10 x 6 4.10 58 218.02 10.55 20.67
M3 15 % 8 3.01 150 G495.35 136.19 47.69
Mk0O4 15 % 8 1.91 90 620.69 20.59 20.98
Mk(05 15 x4 1] 106 144980 74.55 19.45
MEO6 10 > 15 3.27 150 #094.39 14783 54.75
MEkOT 20 x5 2.83 100 1939.33 57.92 33.48
MO 20 = 10 1.43 225 5950.91 643.39 13.91
MEk0O9 20 x 10 2.53 240 24586.00 G11.88 38.30
Mk10 20 =% 15 2.08 240 31990.55 583.49 53.90

The first phase of computational experiments was devoted to parallelization
efficiency determination by estimating experimental speedup values. The sequen-
tial algorithm using one GPU processor was coded with the aim of determining
the speedup value of the parallel algorithm. Such an approach is called orthodox
speedup and it compares times of algorithms execution on machines with the
same processors (1 versus p processors). Table 1 shows computational times for
the sequential and the parallel algorithin as well as speedup values. The ortho-
dox speedup s value can by set by the following cxpression s = '5—*’ where ¢, - the

computational time of sequential algorithm executed on the single processor of
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the GPU. 7, - the computational time of parallel algorithm executed on p pro-
cessors of the GPU. Flex. denotes the average number of equivalent machines
per operation. As we can notice the highest speedup values were obtained for
the problem instances with a bigger number of jobs n and the numnber of oper-
ations o. In this phase the simple INSA algorithm was applied in the operation
scheduling module of the parallel metaheuristics.

Table 2. Valucs of the obtaining solutions for Barnes and Chambers [1] instances. The
TSAB algorithm was used in the operation scheduling module of the M?h. New the
best known solutions are marked out by a bold font.

problem n X m (LB.UB) MG [6] hGA [4] M*h
mtllcl 10 x 11 (655,927) 8925 927 927
Tt 10ce 10 =< 12 (655,914) 910 910 908
mt10x 10 x 11 (655,929) 918 918 922
it 10w 10 x 12 (655,929) 918 918 915
mt 10xxx 10 x 13 (655,936) 918 018 918
mit 10xy 10 % 12 (655.913) 906 805 905
mt10xy7 10 % 13 (655,849) 847 849 855
setbdcd 15 % 11 (857.924) 919 914 914
scthdec 15 =12 (857.909) 909 914 907
sethdx 15 1 (B46.937) 025 925 925
sethdxx 15 12 (846.930) 925 925 925
sethdsom 15 13 (846.925) 925 925 925
sethixy T 1% (845,924) 916 916 910
sethdxyz Faix 13 (838,914) 905 905 905
setihel2 15 % 16 (1027.1185) 1174 1175 1174
setibee 15 = 17 (955.1136) 1136 1138 1136
setidx 15 x 16 (955,1218) 1201 1204 1199
setidxx 1530 1F (955.1204) 1199 1202 1198
setifxxx 15 x 18 (955,1213) 1197 1204 1197
setidxy 5%l 4 (955,1148) 1136 1136 1136
seti5xyz 15 x 18 (955.1127) 1125 1126 1128

The second phase ol the tests was refer to obtaining as good results of the
cost function as possible. In this phase specialized TSAD algorithm of Nowicki
and Smutnicki [7] was used in the operation scheduling module of the parallel
meta®heuristics. Despite of being more time-consuming the quality of the ob-
tained results is much better than in the case of using INSA. By means of this
approach il was possible to obtain 5 new the best known solutions for the bench-
marks of Barnes and Chambers [1]. for instances mt10cc (the new value 908),
set64c9 (907), setb4xy (910), setibx (1199) and setibxx (1198).

The obtained results were also compared to other resent approach from the
literature proposed for the flexible job shop problem. The proposed parallel
MPh algorithm managed to obtain the average relative percentage deviation to
the best known solution of the Barnes and Chambers benchmark instances on
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the level of 0.014% versus 0.036% of the MG [6] algorithm of Mastrolilli and
Gambardella and 0.106% of the hGA [4] algorithm of Gao et al.

6 Conclusions

We have discussed a new approach to the scheduling problems with parallel
machines, where assignment of operations to machines defines a classical prob-
lem without parallel machines. We propose double-level parallel metaheuristics.
where each solution of the higher level. i.e. jobs assignment to machines, defines
an NP-hard job shop problem. which we are solving by the second metaheuris-
tics (constructive INSA or tabu search based TSAB) — we call such an approach
meta®heuristics. Using exact algorithms on both levels (i.e. branch and bound)
makes possible to obtain an optimal solution of the problem.
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