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" Abstract. In this paper, parallel simulated annealing with genetic en-
hancement algorithm (HSG) is presented and applied to permutation
flow shop scheduling problem which has been proven to be N"P-complete
in the strong sense. The metaheuristics is based on a clustering algorithm
for simulated annealing but introduces a new mechanism for dynamic SA
parameters adjustment based on genetic algorithms. The proposed paral-
lel algorithm is based on the master-slave model with cooperation. Fuzzy
arithmetic on fuzzy numbers is used to determine the minimum comple-
tion times Cluax. Finally. the computation results and discussion of the
algorithms performance are presented.

1 Introduction

Practical machine scheduling problems are numerous and varied. They arise
‘1 diverse areas such as flexible manufacturing systems, production planning,
communication, computer design, etc. A scheduling problem is to find sequences
of jobs on given machines with the objective of minimizing some function. In a
simpler version of the problem, flow shop scheduling, all jobs pass through all
machines in the some order. In this paper, we deal with another special version
of the problem called a permutation flow shop (PFS) scheduling problem where
each machine processes the jobs in the same order. The PFES problem belongs
to the NP-hard class problems. however a solution of such a problem is usually
made using heuristic approach that converges to a locally optimal solution.

In recent studies. scheduling problems were fuzzificated by using the concept
of fuzzy due date and processing times. In paper Dumitru and Luban [3] inves-
tigate the application of fuzzy sets on the problem of the production scheduling.
Tsujimura et al. [12] present the branch and bound algorithm for the three ma-
chine flow shop problem when job processing times are described by triangular
fuzzy numbers. Especially fuzzy logic application on the scheduling problems
(by using fuzzy processing times) is presented in papers: Ishibuschi and Murata
[6], Tzzettin and Serpil [5] and Peng and Liu [9].
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In this study. flow shop scheduling problem of the typical situation of the
flexible production systems which occupy a very important place in recent pro-
duction systems are taken into consideration with fuzzy processing time.

2 Flow Shop Scheduling

The permutation flow shop problem can be formulated as follows. Each of n jobs
from the set J = {1,2,..., ,n} has to be processed on m machines 1,2,...,m
in that order. Job 7 € J , consists of a sequence of m operations: opemtlon
Oj1. corresponds to the job j processing on machine & during an uninterrupted
processing time p;z.. Assumptions:

(a) for each job only one operation can be processed on a machine,

(b) each machine can process only one job at a time.

(¢) the processing order is the same on each machine

(d) all jobs are available for machine processing simultaneously at time zero.

We want to find a schedule such that the processing order is the same on each
machine and the maximum completion time is minimal.

The flow shop problem is NP-complete and thus it is usually solved by ap-
proximation or heuristic methods. The use of simulated annealing is presented.
e.g., in Osman and Potts [8], Bozejko and Wodecki [1] (parallel algorithm), tabu
search in Nowicki and Smutnicki[7], Grabowski and Wodecki [4], and genetic
algorithm in Reeves [11].

Each schedule of jobs can be represented by the permutation = = (7(1), 7(2).

, m(n)) on the set J. Let IT denote the set of all such permutations. We wish
to find such permutation n* € I, that

Graln™ o—=Wilren Crameli)
where Chhax () is the time required to complete all jobs on the machines.

3 Flow Shop Scheduling with Fuzzy Processing Times

Let us suppose that processing times of the jobs on machines are not determin-
istic but they are given by fuzzy numbers. .

In this paper the fuzzy processing times p; ; (i =1,2....,m, j = 1,2, L
are represented by a triangular membership function p (1 i 3 tuple Bl = (p3
p,‘f"fd, Py (i=1.2,...,m, j=1,2,...,n) with the following properties:
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The addition of fuzzy numbers @ = (ay,a2,a3) and b= (b1,b9,b3), can b
derived from the extension principle and it is as follows (see [2])

@+ b= (a1 + b1, a2 + b, az + b3).
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Similarly
max{a, 5} = (max{ay, b1 }. max{as. bo}, max{as.bs}).

If the time of the job execution 7 (i) (w € IT) on the machines j is determined

0y a fuzzy number
( min . Imax )

Pr(i)g = Dr(3),5 p_( )J Pr(i),j

rhen its finishing time is a fuzzy number in the form of:
S min med TIAxN = min med max
C’?T('I,),_? = ( 7'_(2:) i C"’(L) PE W(?)j) f “here ‘JT(E.}_? C_( )_} (lnd. ‘«T{?)-j
can be determined from the following recurrent formulas:

o i) 0] ) 9 .
Crnys = 111?1};{(72(.5_1)_3-._ Crii)j—1t T Pai),y» O € {min, med, max},
with the initial conditions
C(S(O):j = 7= 1,2, ... ,, C‘Om § =0 i=12 .1, ¢ € {min, med, max}
The time of all jobs execution (in the 7 sequence) is also a fuzzy number

Conax() = (CFay,ms Ciyms Cntaym)-

w(n),m: “Yw(n).m:

The ranking function delined as follows is to compare fuzzy cost function values:

O f i d med max "

HConax(m)) = 7 (O 1 + O+ CriSm ¥ Coiim) (1
The permutation flow shop scheduling problem with fuzzy processing times
(FPFS) consists in determining a permutation n* € II such that

S(Crnax(7)) = min{S(Coax(B)) : B € I},

which fulfills constrains (a)-(d).

4 Parallel Hybrid Algorithm

In this section simulated annealing (SA ) with the genetic enhancement algorithm
(HSG)is used for the permutation flow shop problem with Cyax. The classic SA
algorithm and all modifications leading to HHSG are described below. We shall
present methods of algorithms parallelization as well as its modifications for the
flow shop problem in which execution times are fuzzy numbers.

Classic simulated annealing algorithm

In classic simulated annealing in each iteration a new solution is generated and
evaluated. If it is better than the original solution it is accepted, and if it is
worse then it is accepted with probability equals to exp(—J/T'), where § is the
difference between values of the original and the new solution, and 7" is a control
parameter corresponding to temperature in annealing process in metallurgy. The
SA algorithm general scheme is presented on the listing:
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T := start temperéture current := generate initial solution
evaluate current
best:=current
repeat
count:=0
repeat
candidate:=generate candidate from current
evaluate candidate
if candidate 1s better than best then update best
accept candidate as current with probability .
equal to min(l, exp((F(current) - F(candidate))/T)J
count++
until (count == number of iterations at temperature T)
decrease temperature according to cooling scheme
until (stopping criteria)

To generate new candidate solutions both transposition and insertion moves
arc applied with equal probability. In TISG basic geometric cooling scheme is

= v

used, so the temperature decreases according to the formula Ty = a X Tod-

Clustering algorithm for simulated annealing

In their paper, Ram ct al. [10] propose a parallel Clustering algorithm for simu-
lated annealing (CASA). In this algorithm master and worker nodes are distin-
auished. CASA is divided into generations in which the master node distributes
the initial solution (or solutions) along worker nodes so they can start running
simulated annealing independently. Then, each fixed number of iterations of SA,
best, solutions found by worker nodes are gathered by the master node. Next the
generation starts with the hest solution found so far as the initial solution. This
model of parallelism is adopted into the HSG algorithm.

Simulated annealing with genelic enhancement

As it has been mentioned before. a mechanism to dynamically adjusted SA's
configuration during the runtime is introduced in order to reduce its influence
on performance. The SA configuration includes start temperature. minimal Lem-
perature and cooling ratio. Number of SA iterations between consecutive tem-
perature reductions is computed in such a way that at the end of the generation
temperature is equal to the minimal temperature.

Algorithm description, configuration and complerily

The master node is responsible for generating initial solution. Then at beginning
of each generation, the master node broadcasts the best solution found so far
il necessary (iec. in first generation or when new best solution was found in
a previous generation). After that. worker nodes start SA algorithm for a fixed
number of iterations and master node waits until they finish. Finally, the master
node gathers values of the best solutions found by worker nodes and selects the
hest among them. If this best value is better than the best value stored by the
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master node, respective permutation is received from a worker node which had
found it. and this solution is considered as the best in the next generation. Below
listing contains pseudo-code for the the master node in the HSG algorithm.

best := generate initial solution
for i := 1 to number of generations do
broadcast best to worker nodes (if necessary)
gather values of the best solutions found by worker nodes
select best solution and receive permutation
from a worker node that found it (if necessary)
update best
end.

At each worker node a fixed number of gencrations is performed. Each of these
generations starts with receiving the best solution from the master node (if nec-
essary ). This solution is then used as an initial solution to execute SA algorithm
for a fixed number of iterations. Each worker node starts with different SA con-
figuration (referred to as individual, in analogy to genetic algorithms) which is
generated randomly with mmiform distribution from following ranges: [1, 200] for
start temperature, [0.1. 1] for minimal temperature and [0.9, 1) for cooling ratio.
After SA algorithm is finished. value of the best solution is returned to the mas-
ter node. If this value is the best among other worker nodes, and better than
the best value stored by the master node, respective permutation is sent back
to the master node.

Each individual has its TTL (time to live) with initial value which is HSG's
parameter. If a solution returned by SA algorithm at the end of generation 1s not
better than initial one, TTL of respective worker's individual is reduced by one.
Otherwise. TTL is reset to the initial value. If individual survives (i.e. its TTL
is positive), limit for minimal temperature is lifted and worker continues next
generation with a temperature, which it has finished last generation with. If TTL
of any individual reaches zero, it is replaced with a new one. generated randomly.
Listing contains pseudo-code for each worker node in the TISG algorithm and
Figure 1 presents co-operation between nodes in the HSG algorithm.

Generate inital individual (SA configuration)
for i:=1 to number of generations do
receive best solution from the master node (if necessary)
execute SA algorithm for a fixed number of iterations
gsend back the best value found to the master node
gsend back the best solution’s permutation
to the master node (if necessary)
update individual’s TTL and replace it if TTL reaches zero
end.

The HSG's configuration includes number of worker nodes, mumber of genera-
tions and number of SA iterations to be performed in each generation and initial
TTL for each individual.
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Fig. 1. Co-opcration between nodes in IISG algorithm

5 Hybrid Algorithm with Fuzzy Processing Times

the Section 3 the method of cost function value caleulation for the permutation

w shop problem with fuzzy jobs execution times was described. The adequately

modified TTSG algorithim (in which fuzzy jobs execution times was included) will
represented as FzHSG.

5.1  Algorithms Stability

Let p = [Pijlnem be (deterministic) jobs execution times for an instance of the
“Fs problem. By P(p) we describe a set of examlpes of data generated from p by
e disturbance of jobs execution times (i.e. elements from p). The disturbance

isists in random changes of p; ; values, 1 = 1.2..... m., 3 =1.2,..., 1. This
procedure is detailed deseribed in the Section 5.2. We use the following 1'101’.5011:
A - an algorithm of solving PFS problem.

D = [pijlnam - an instance of data (execution times) for the PFS problem,
T - a solution determined by the algorithm A for the data p.
- a value of the cost function for the data d and a sequence

of jobs execution (permutation) —'J‘.
_ct p be an instance of deterministic data and ﬂ(pj a set of disturbed data. For
-1 algorithin A and an instance of disturbed data d

md.\L,"Jl d) Iud\(“éi d)
- 100%. 2
C‘Lna\ d} % ( )

P
Crmax [:ﬁf;l! d)

6(A,p,d) =

Chis formula defines a percentage relative deviation of the cost function value
~or the d if jobs are executed in the sequence Ff;l and :ra’l. By
I
(4, p, D(p)) m“Z A.p.d) (3)

T deDip)



Parallel Hybrid Metaheuristics for the Scheduling 385

we define the stability of the best solution of an instance p determined by
an algorithm A on the set of disturbed data D(p). Permutations 7' and 77 are
the best solutions determined by the algorithm A for the data p and d € D( p),
respectively.

Let 2 be a set of some (deterministic) data instances for the PES problem.
The algorithm stability A on the data set (2

S(4. 2 H| > A(A D)) )

5.2 Computational Experiments

The algorithms HSG and FzHSG were coded in C++ using MPTCH2 implemen-
tation of MPI standard for communication between nodes. All experiments were
ran on Cranfield Univerity's Astral cluster, which is equipped with 856 Xeon
3 GHz processors. 2 GB memory for each, and Infiniband network. HSG and
FzHSG tested on the first 6 groups of benchmark nstances (see ORU Library:
http: / /msemga.ms.ic.uk/info.html). The benchmark set contains 120 particu-
lary hard instances of 12 size. For each size (group, ta001-ta060) nxm: 20x3,
20x10. 2020, 50x 35, 50x 10, 50x20.
Fuzzy jobs erecution fimes jf-ne*;r‘nfinﬂ.

s B = Lidpy . j=1.2.....n) is an instance of deterministic data
for the PFS problem. len fu.:m Joba execution times p; ; are represented by a

tr lp]e me1!1 med max )

Pii 2 Pig ), Where

,n‘n;n =maxll, (D~ ms /3] b pmd =p;;. and pit* = [p;; + pi /6]
Disturbed data generation

For each instance of deterministic data p = {pi ; }mxn there were 100 instances
generated - elements of the set D(p). If an instance of the data d € D(p)
(d = {d;;j}mxn) than jobs execution times were drawn (due to the uniform
distribution) from the range [max{1l. [p; ; — pi.;/31}. [pij + i /6]]-

There were 6 000 instances generated of dlbtulhed data in total. For the each
eroup of instances the values parameters (2) and (3) were calculated and they are
shown in the Table 1. Values é,,in 1 0max are values of the minimal and maximal
deviation defined by (2). respectively, for the group of instances, and d;ped — an
average value. The stability of both algorithm was also calculated on the sct
2 includiug groups of instances shown in the Table 1. For the H5G algorithm,
S(HSG. 2) = 2.02%. and for the algorithm with fuzzy jobs execution times
FzHSG. S(FzHSG. 2) = 2.00%. Therefore. the stability of both algorithms is
almost identical. Tt follows among others from this that fuzzy jobs finishing times
(after defuzzification) were insignificantly different from the times caleulated for
the input deterministic times. The disturbance process of the jobs exccution
times makes the times of jobs shorter or longer, but it has small influence on the
time of jobs finishing. Therefore, values of the cost function are almost identical.
The application of parallelism makes possible to execute all the calculations
about 1 hour.
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T— Parallel hybrid algorithm 118G Fuzzy parallel hybrid algorithm FzHSG
Omin Daprd i Femin fsnrd Armax
205 0.022 1.732 5487 0.022 1592 5471
20x10 (1.157 2.166 6.013 0.102 2.326 5.964
2020 0.270 2.2406 5.263 (J.359 2.275 5.254
50x 5 0.044 1.238 4.088 0.030 1.240 4.150
50x10 0.222 2.172 4577 0.255 2.196 5.122
5020 0.528 2.198 4.155 0.511 2.178 4.219

6

Conclusions

We present a parallel simulated anncaling algorithm with genetic enhancement
for a permutation flow shop problem with fuzzy processing times. The algorithm
introduces a dynamic parameters adjustment for simulated annealing algorithm.
The parallel algorithm stability was also defined and researched for the deter-
ministic and fuzzy jobs execution times.
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