
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

J. Parallel Distrib. Comput. 69 (2009) 470–481

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Solving the flow shop problem by parallel programming
Wojciech Bożejko
Institute of Computer Engineering, Control and Robotics, Wrocław University of Technology, Janiszewskiego 11-17, 50-372 Wrocław, Poland

a r t i c l e i n f o

Article history:
Received 12 January 2008
Received in revised form
14 January 2009
Accepted 26 January 2009
Available online 11 February 2009

Keywords:
Parallel algorithm
Flow shop problem
PRAM

a b s t r a c t

The matter of using scheduling algorithms in parallel computing environments is discussed in this paper.
There are proposed methods of parallelizing the criterion function calculations for a single solution
and a group of concentrated solutions (local neighborhood) dedicated to being used in metaheuristic
approaches. Also a parallel scatter-search metaheuristic is proposed as a multiple-thread approach.
Computational experiments are done for the flow shop, the classic NP-hard problem of the combinatorial
optimization.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

We take into consideration the permutation flow shop schedul-
ing problem described as follows. A number of jobs is to be pro-
cessed on a number of machines. Each job must go through all the
machines in exactly the same order and the job order must be the
same on each machine. Each machine can process at most one job
at any point of time and each job may be processed on at most one
machine at any time. The objective is to find a schedule minimiz-
ing the sum of job’s completion times (F ‖ Csum problem) or max-
imal job completion time (F ‖ Cmax problem). Both problems are
strongly NP-hard. Since the known exact algorithms own, neces-
sarily, exponential computational complexity, then even a signif-
icant increase of computer power will result in an incomparably
small increase of the size of instances we can solve. Thus, there ex-
ist two, not mutually conflicting, approaches which allow one to
solve large-size instances in an acceptable time: (1) approximate
methods (mainly metaheuristics), (2) parallel methods.
Scheduling and assignment problems are almost always

parallelized by multiple-threads methods, such as parallel tabu
search of Taillard for the QAP [13] and for the job shop
problem [14], parallel scatter-search of James et al. [7] for the
QAP and parallel genetic algorithm of Bożejko andWodecki [3] for
the single machine total weighted tardiness scheduling problem.
These implementations do not parallelize the cost function – the
most expensive element of computations – but execute multiple-
working, cooperative or independent, metaheuristic threads
(maybe except a parallel genetic algorithm where a process of

E-mail address:wojciech.bozejko@pwr.wroc.pl.

population evaluation can be also parallelized). The method of
cost function computing in parallel is strongly connected with
this problem; Steinhöfel et al. [12] propose a method, based
on a parallel Floyd–Warshall algorithm, of parallel cost function
computing for the job shop problem.
Genuine methods of parallel cost function computing for a

single solution and a group of local solutions (neighborhood) are
presented in a paper for the flow shop problemwith Cmax and Csum
criteria. These methods concern dissimilar techniques of a parallel
algorithm’s projecting process as well as different necessities
of modern algorithms of discreet optimization (analysis of one
solution, analysis of a local neighborhood). Efficiency, cost and
computation speedup depending on type of the problem, its size
and the environment of the parallel system used are considered
especially in this part of the paper. Theoretical estimations of
properties are derived for particular algorithms, and comparative
analysis of the advantages resulting from applications of different
approaches has been conducted.
In the matter of computational experiments, dedicated to ho-

mogeneous and heterogeneous multiprocessors systems (such as
mainframe computers, clusters, and diffuse systems connected by
networks), a vector processing based on aMMX instruction set has
been projected and researched experimentally in the application
of flow shop scheduling problems. Also, a parallel variant of the
scatter-searchmethod, one of themost promising currentmethods
of combinatorial optimization, has been projected and researched
experimentally, in the application of flow shop scheduling prob-
lems with Cmax and Csum criteria. In some cases the effect of ortho-
dox superlinear speedup has been observed. Although algorithms
have not been designed for obtaining extremely good solutions,
some new the best solutions have been obtained for the Csum flow
shop problem for benchmark instances of Taillard [15].

0743-7315/$ – see front matter© 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2009.01.009

Author's personal copy

W. Bożejko / J. Parallel Distrib. Comput. 69 (2009) 470–481 471

2. Problems

The flow shop problem with makespan criterion. We
consider the well-known in the scheduling theory strongly NP-
hard problem called the permutation flow-shop problem with the
makespan criterion denoted by F ‖ Cmax. Skipping consciously the
long list of papers dealingwith this subject,weonly refer the recent
reviews and the best up-to-now algorithms [8,6,9] to the reader.
This problem has been introduced as follows. There are n jobs

from a set J = {1, 2, . . . , n} to be processed in a production
system having m machines, indexed by 1, 2, . . . ,m, organized
in the line (sequential structure). A single job reflects one final
product (or sub-product) manufacturing. Each job is performed
in m subsequent stages, in a common way for all tasks. Stage i is
performed by machine i, i = 1, . . . ,m. Each job j ∈ J is split into a
sequence ofm operationsO1j,O2j, . . . ,Omj performed onmachines
in turn. Operation Oij reflects processing job j on the machine i
with the processing time pij > 0. Once started a job cannot be
interrupted. Each machine can execute at most one job at a time;
each job can be processed on at most one machine at a time.
The sequence of loading jobs into a system is represented by a

permutation π = (π(1), . . . , π(n)) on the set J . The optimization
problem is to find the optimal sequence π∗ so that

Cmax(π∗) = min
π∈Π

Cmax(π) (1)

where Cmax(π) is themakespan for permutationπ andΠ is the set
of all permutations. Denoting by Cij the completion time of job j on
the machine i we have Cmax(π) = Cm,π(n). Values Cij can be found
by using either the recursive formula

Ciπ(j) = max{Ci−1,π(j), Ci,π(j−1)} + piπ(j),

i = 1, 2, . . . ,m, j = 1, . . . , n, (2)

with initial conditions Ciπ(0) = 0, i = 1, 2, . . . ,m, C0π(j) = 0,
j = 1, 2, . . . , n, or the non-recursive one

Ciπ(j) = max
1=j0≤j1≤···≤ji=j

i∑
s=1

ji∑
k=ji−1

psπ(k). (3)

The computational complexity of (2) is O(mn), whereas for (3) is
O((j+i−2i−1)(j+ i−1)) = O(

(n+m)n−1

(n−1)!). In practice the former formula
has been commonly used.
It should be noted that the problem of transforming the

sequential algorithm for scheduling problems into a parallel
one is nontrivial because of the strongly sequential character of
computations carried out by (2) and by other known scheduling
algorithms.

The flow shop problem with Csum criterion. The objective is
to find a schedule minimizing the sum of a job’s completion times.
The problem is indicated by F ‖ Csum. There are plenty of good
heuristic algorithms for solving the F ‖ Cmax flow shop problem,
with the objective of minimizing amaximal job’s completion time.
For the sake of special properties (blocks of critical path, [6]) it is
recognized as an easier one than a problem with objective Csum.
Unfortunately, there are no similar properties (which can speed up
computations) for the F ‖ Csum flow shop problem. Constructive
algorithms (LIT and SPD from [16]) possess low efficiency and can
only be applied to a limited range. There is a hybrid algorithm
in [11] consisting of elements of tabu search, simulated annealing
and path relinking methods. The results of this algorithm, applied
to Taillard benchmark tests [15], are the best known ones in the
literature nowadays.
The flow shop problem alongwith the sumof a job’s completion

time criterion can be formulated, taking notations from the

Fig. 1. Graph G(π).

previous paragraph, in the following way: we wish to find a
permutation π∗ ∈ Π that:

Csum(π∗) = minπ∈Π Csum(π), where Csum(π) =
n∑
j=1

Cmπ(j),

where Ciπ(j) is the time required to complete the job j on the
machine i in the processing order given by the permutation π .
The completion time of job π(j) on the machine m can be found
by using the same formulas (2) or (3) as in the problem with a
makespan criterion.

2.1. Graph model

Values Cij from Eqs. (2) and (3) can be also determined using a
graph model of the flow shop problem. For a given sequence of a
job’s executionπ ∈ Π we create a graph G(π) = (M×N, F 0∪F∗),
whereM = {1, 2, . . . ,m}, N = {1, 2, . . . , n}.

F 0 =
m−1⋃
s=1

n⋃
t=1

{((s, t), (s+ 1, t))} (4)

is a set of technological arcs (vertical) and

F∗ =
m⋃
s=1

n−1⋃
t=1

{((s, t), (s, t + 1))} (5)

is a set of sequencing arcs (horizontal). Arcs of the graph G(π)
have no weights, but each vertex (s, t) has as weight ps,π(t). A
time Cij of finishing a job π(j), j = 1, 2, . . . , n on the machine
i, i = 1, 2, . . . ,m equals the length of the longest path from
the vertex (1,1) to the vertex (i, j), including the weight of the
last one. For the F ‖ Cmax problem, the value of the criterion
function for fixed sequence π equals the length of the critical path
in the graph G(π) (see Fig. 1). For the F ‖ Csum problem the
value of the criterion function is the sum of length of the longest
paths which begins from the vertex (1, 1) and ends on vertexes
(m, 1), (m, 2), . . . , (m, n).

3. Single-thread search

We consider an algorithm which uses a single process (thread)
to guide the search. The thread performs in a cyclic way
(iteratively) two leading tasks: (A) goal function evaluation for
single solution or a set of solutions, (B) management, e.g. solution
filtering and selection, collection of history, updating. The part (B)
takes statistically 1%–3% total iteration time, then its acceleration
is useless. The part (A) can be accelerated in a parallel environment
in variousmanners—our aim is to find either a cost optimalmethod
or a non-optimal one in the cost sense offering the shortest running
time.

Author's personal copy

472 W. Bożejko / J. Parallel Distrib. Comput. 69 (2009) 470–481

Fig. 2. Sequence of calculations for Cij in Proof of Theorem 1.

3.1. Single solution

In each iterationwehave to find a goal function value for a single
fixedπ . Calculations can be spread into parallel processors in a few
ways.

Theorem 1. For a fixed π the value of criterion function for problems
F ‖ Cmax and F ‖ Csum can be found on the CREW PRAM machine in
time O(n+m) by using m processors.

Proof. Without the loss of generality one can assume that π =
(1, 2, . . . , n). Calculations of Ci,j by using (2) have been clustered.
Cluster k contains valuesCij such that i+j−1 = k, k = 1, 2, . . . , n+
m − 1 and requires at most m processors. Clusters are processed
in an order k = 1, 2, . . . , n + m − 1. The cluster k is processed
in parallel on at most m processors. The sequence of calculations
is shown in Fig. 2 on the background of a grid graph commonly
used for the flow shop problem. Values linked by dashed lines
constitute a single cluster. The value of Cmax criterion is simple
Cm,n. To calculate Csum =

∑n
j=1 Cm,j we need to add n values Cm,j,

which can be performed sequentially in n iterations or in parallel
by usingm processors with the complexity O(n/m+ logm). Finally
the computational complexity of determining the criterion value
for F ‖ Cmax and F ‖ Csum problems is O(n + m) by using m
processors. �

Fact 1. The speedup of the method from Theorem 1 is O(nmn+m),
efficiency is O(n

n+m).

The presented method is not cost optimal. Its efficiency slowly
decreases along with increasingm. For example for n = 10,m = 3
efficiency is about 77%, whereas for m = 10 is 50%. 1 Clearly, for
n � m efficiency tends to 100%, and for n � m quickly decreases
to 0. This method requires fixing an a priori number of processors
p = m, which does not seem to be troublesome since usually
in practice m ≤ 20. Emulation of calculations by using p < m
processors increases computational complexity to O((n+m)m/p),
although the construction of a proper algorithm remains open. If
p ≥ m, then (p−m) processors will be unloaded.

Theorem 2. For a fixed π the value of criterion function for problems
F ‖ Cmax and F ‖ Csum can be found on the CREW PRAM machine in
the time O(n+m) by using O(nmn+m) processors.

Proof. Without loss of generality one can assume that π =

(1, 2, . . . , n). It is based on the scheme of calculations shown in
Fig. 3. Let p ≤ m be the number of processors used. The calculation

1 Evaluation is true with a certain constant multiplier.

Fig. 3. Sequence of calculations for Cij in Proof of Theorem 2. Calculations assigned
to set of p processors have been clustered.

process will be carried out for levels k = 1, 2, . . . , d, d = n+m−1
in this order. On the level k we perform a calculation of nk values
Ci,j such that i+ j− 1 = k,

∑d
k=1 nk = nm.

We cluster nk elements on the level k into
⌈
nk
p

⌉
groups; first⌊

nk
p

⌋
groups contain p elements each, whereas the remaining

elements (at most p) belong to the last group. Fig. 3 shows the
structure of groups on successive levels. Parallel computations on
level k are performed in time O

(⌈
nk
p

⌉)
. The total calculation time

is equal to the sum over all levels and is of order

d∑
k=1

⌈
nk
p

⌉
≤

d∑
k=1

(
nk
p
+ 1

)
=
nm
p
+ d =

nm
p
+ n+m− 1. (6)

We are seeking the number of processors p, 1 ≤ p ≤ m, for which
the efficiency of parallel algorithm is O(1) — this ensures the cost
optimality of the method. Value p can be found from the following
condition

1
p

nm
nm
p + n+m− 1

= c = O(1) (7)

for some constant c < 1. After a few simple transformations of (7)
we obtain

p =
nm

n+m− 1

(
1
c
− 1

)
= O

(
nm
n+m

)
. (8)

Setting p = O(nmn+m), we get that the total calculation time of Cij
values equals

O
(
nm
p
+ n+m− 1

)
= O

(
nm
nm
n+m

+ n+m

)
= O(n+m). �

(9)

Fact 2. The speedup of method based on Theorem 2 is O(nmn+m), the
cost is O(nm).

This method is cost-optimal and allows one to control the
efficiency as well as speed of calculations by choosing the number
of processors and adjusting the parameters of calculations to
the real number of parallel processors existing in the system.
Besides, Theorem 2 provides the ‘optimal’ number of processors
that ensures cost-optimality of thismethod. This number can be set
by a flexible adaptation of the number of processors to both sizes
of the problem, namely n and m simultaneously. For example, for

Author's personal copy

W. Bożejko / J. Parallel Distrib. Comput. 69 (2009) 470–481 473

n � m we have p ≈ m, for n � m we have p ≈ n � m, whereas
for n ≈ mwe have p ≈ n/2.
Observe that both Theorems 1 and 2 own the same bound

O(n + m) on the computational complexity, which is the natural
consequence of the sequential structure of formula (2). In order to
obtain a higher speedup we need to give up the scheme (2). On
the current state of knowledge there remains only a non-recursive
scheme (3) of a very high computational complexity.

Theorem 3. For a fixed π the value of criterion function for problems
F ‖ Cmax and F ‖ Csum can be found on the CREW PRAM machine in
time O(m+ log n) by using O((n+m)

n−1

m(n−1)!) processors.

Proof. Without loss of generality one can assume that π =

(1, 2, . . . , n). We use the formula (3) which can be re-written in
the form of

Cij = max
1=j0≤j1≤···≤ji=j

i∑
s=1

(
Ps,js − Ps,js−1−1

)
, (10)

where Ps,t =
∑t
k=1 psk is the prefix sum, t = 1, 2, . . . , n. For a

fixed s the value of Ps,t can be found in time O(log n) on O(n/ log n)
processors, t = 1, 2, . . . , n. Thus, all Ps,t for t = 1, 2, . . . , n,
s = 1, 2, . . . ,m can be found by using O(mn/ log n) processors
in time O(log n) once at the beginning. For the goal function we
need Cmn. The number of all subsequences (j0, j1, . . . , jm) satisfying
the condition 1 = j0 ≤ j1 ≤ · · · ≤ jm = n corresponds
one-to-one to the number of combinations of m − 1 elements
with repetitions on the (n − 2)th element set and is equal
(
n+m−2
m−1). The method of generating such subsequences in time

O(m) by using (n+m−2m−1) processors one can find in the Appendix.
Next, by using (n+m−2m−1) processors one can find sequentially
all sums

∑m
s=1

(
Ps,js − Ps,js−1−1

)
from the formula (10) for all

subsequences in time O(m). To find value Cmn we have to find the
maximum (for Cmax criterion), or the sum (for Csum) of (

n+m−2
m−1)

calculated sums which can be found in time O(log(n+m−2m−1)) by
using O((n+m−2m−1)/ log(

n+m−2
m−1)) processors.

The computational complexity of this step through the
inequality,(
n+m− 2
m− 1

)
=
m(m+ 1) . . . (n+m− 2)

(n− 1)!
≤
(n+m)n−1

(n− 1)!
(11)

and well-known equation log(n!) = Θ(n log n) is equal to

O
(
log

(n+m)n−1

(n− 1)!

)
= O

(
n log

(
1+

m
n

))
. (12)

Note that (12) implies

n log
(
1+

m
n

)
≤ lim
n→∞

(
n log

(
1+

m
n

))
= log lim

n→∞

(
1+

m
n

)n
= log em = m log e (13)

which is O(m). Since the computational complexity of the
remaining algorithm steps is not greater than O(max(m, log n)) =
O(m + log n) it is also the final computational complexity of this
method. The number of processor used is

O

(
max

(
mn
log n

,
(
n+m−2
m−1)

log(n+m−2m−1)

))
= O

(
(n+m)n−1

m(n− 1)!

)
. �

Fact 3. The speedup of the method from Theorem 3 is (mn
m+log n).

Fig. 4. Graph G∗(π).

The number of processors grows exponentially along with
increasingn, simultaneously decreasing the efficiency very quickly.
Thus, the result has a theoretical meaning rather than a practical
one.
The next two theorems also deal with the problem of

determining a goal-function for flow shop problems with Cmax and
Csum criteria. The lower computational complexity (logarithmic)
can be obtained at the expense of increasing the number of
processors and losing the of cost-optimality property using
different techniques of calculation.

Theorem 4. For a fixed π the value of criterion function for the
problem F ‖ Csum can be determined in a time O(log(n+m) log(nm))
by using O((nm)

3

log(nm)) processors of the CREW PRAM machine.

Proof. We will propose a parallel method based on sequential
Floyd–Warshall algorithm [4] dedicated to determining the
shortest path in a graph. Without losing generality we can assume
that π = (1, 2, . . . , n). Determining Cij values will be done by
using a mesh graph G(π) described in Section 2.
To obtain a better clearness of notations an original graph

G(π) was transformed into an equivalent graph G∗(π) by re-
enumerating vertexes. We set numbers 1, 2, . . . , nm to successive
vertexes as in Fig. 4 to obtain the homogenous enumeration.
Therefore, we define a new graph G∗(π)with a set of vertexes

W = {u : u = 1, 2, . . . , nm}. (14)

A vertex (i, j) in the graph G(π) is equivalent to mutually
unambiguous transformation to a vertex

u = (i− 1)n+ j (15)

of a new graphG∗(π). A vertex u ∈ W is equivalent to a vertex (i, j)
of a graph G(π) such that

i =
⌊
u− 1
n

⌋
+ 1, j = u−

⌊
u− 1
n

⌋
n. (16)

By such a transformation we obtain a graph

G∗(π) = (W , E0 ∪ E∗), (17)

where sets of vertical and horizontal arcs are the following:

E0 =
nm−n⋃
u=1

{(u, u+ n)}, E∗ =
m⋃
k=1

kn−1⋃
u=(k−1)n

{(u, u+ 1)}. (18)

A vertex u ∈ W obtains aweight (described as pu) equals to pij of an
equivalent vertex from a graph G(π). A graph G∗(π) is presented
in the Fig. 4.

Author's personal copy

474 W. Bożejko / J. Parallel Distrib. Comput. 69 (2009) 470–481

For a graph G∗(π) we introduce a distance matrix A = [au,v]
with a size nm × nm, where au,v is the length of the longest path
between vertexes u and v. Values au,v we initiate as follows:

au,v =
{
pu if (u, v) ∈ E0 ∪ E∗

0 if (u, v) 6∈ E0 ∪ E∗.
(19)

The matrix A will be used to determine the length of the
longest path in a graph G∗(π) which also is the length of the
longest path in a graph G(π). Initial values of a matrix A can be
determined in a time O(1) by using (nm)2 processors, because this
operation depends on executing (nm)2 independent instructions
of assignment.
The problem of determining a value of the goal function for the

flow shop problem F ‖ Csum demands finding lengths of the longest
paths from the vertex 1 ∈ W to vertexes (m − 1)n + 1, (m −
1)n+2, . . . ,mn (which is equivalent to determining the following
values of times of jobs finishing:Cm,1,Cm,2, . . . , Cm,n). To determine
the lengths of paths it is enough to execute dlog(n+m−1)e parallel
steps, because in each step k = 1, 2, . . . , dlog(n + m − 1)e the
algorithm described below actualizes lengths of the longest paths
between vertexes with a distance (between them, in the sense
of a number of vertexes) equal to 1, 2, 4, 8, . . . , 2log(n+m−1) (see
also [12]). After having executed dlog(n+m−1)e steps thematrixA
contains information about the lengths of paths between vertexes
remote from (in the sense of a number of vertexes) 2log(n+m−1) =
(n+m−1), therefore between all the vertexes: because the number
of vertexes on the longest (in the sense of a number of vertexes)
paths from vertex 1 to nm, equals (n+m− 1).
For the need of an algorithm an additional three-dimension

table T = [tu,w,v], with a dimensions nm × nm × nm, is defined
to compute the transitive closure of lengths of paths in a graph
G∗(π). An algorithm needs to execute the following identical steps
dlog(n+m)e times:

(1) actualization tu,w,v for all triplets (u, w, v) due to the
constraint tu,w,v = au,w + aw,v ,

(2) actualization au,v for all pairs (u, v)due to the constraint au,v =
max{au,v,max1≤w≤nm tu,w,v}.

The step 1 executed on (nm)3 processors can be carried out in a
timeO(1). On d(nm)3/ log(nm)eprocessors the calculations should
be performed dlog(nm)e times, therefore the computational
complexity of the Step 1 is O(log(nm)).
The step 2 consists of determining the maximum of nm + 1

values which can be done on O(nm/ log(nm)) processors in a time
O(log(nm)) Because such a maximum should be determined for
(nm)2 pairs (u, v) ∈ W (|W | = nm), and these calculations are
independent, it should be repeated dlog(n + m)e times, and thus
all the method needs is the following number of processors

(nm)2O(nm/ log(nm)) = O((nm)3/ log(nm)).

The computational complexity of the described above fragment
of the algorithm is

dlog(n+m)eO(log(nm)) = O(log(n+m) log(nm)).

Finally, for the calculation of the criterion value it is necessary
to sum n values Cmj, where Cmj is a length between a vertex 1 ∈ W
and a vertex (m − 1)n + j, j = 1, 2, . . . , n. It can be done in a
time O(log n) by using O(n/ log n) processors which preserves the
computational complexity O(log(n + m) log(nm)) of all described
methods and the number of processors O((nm)

3

log(nm)). �

Fact 4. For the method based on Theorem 4 we have a speedup
O(nm
log(n+m) log(nm)) and efficiency O(

1
(nm)2 log(n+m)

).

The efficiency of this method is very far from the optimal
O(1). A profit is only connected with a considerable reduction
of computational complexity, from linear to logarithmic (to the
square) with reference to the size of the problem. Unfortunately,
it is done at the expense of a significant increase in the number of
processors used. The analysis of profits leads to surprising results.
For example, for n = 10, m = 3 the efficiency of the method
is about 0.03% with a speedup of 1.65. For n = 20, m = 3 the
efficiency is below 0.01%, but the speedup is 2.25. Using the proof
of Theorem 4 one can formulate a fully analogical theorem for the
Cmax class of the flow shop problem.

Theorem 5. For a fixed permutation π value of the criterion function
for a problem F ‖ Cmax can be determined in a time O(log(n +
m)(log(nm))) by using O((nm)3/ log(nm)) processors CREW PRAM
machine.

The proof results from a proof of the Theorem 4.
Theorems 3 and 5 ruin, in some sense, the intuition which says

that if for the problem F∗ ‖ Cmax there are (n+ m−1) vertexes on
the longest (critical) path, connected by recurrent relation, then
one should execute at least O(n + m) iterations. It occurs that
it is possible to obtain a computational complexity of a lower
order, namely O(log(n + m) log(nm)) or O(m + log n). For a fixed
number of machines m it is possible to obtain the computational
complexity O(log2 n) (method from Theorem 5) or even O(log n)
(method from Theorem 3), respectively. The problem, if it is a limit
value, is open.

3.2. The API neighborhood

A neighborhood based on an adjacent pairwise interchange
(API) of elements in permutation is the simplest and commonly
used one. Sequential algorithms searching API use the so called
accelerator to speedup the run by suitable decomposition and
aggregation of computations for relative solutions: see [8]; this
can be applied only for the problem F ‖ Cmax. Since some further
theorems refer to this concept we will introduce it briefly.
Let π be the permutation that generates neighborhood API and

v = (a, a + 1) be the pair of adjacent positions such that their
interchange in π leads us to the new solution πv . At first for the
permutation π we calculate

rst = max{rs−1,t , rs,t−1 + psπ(t)},
t = 1, 2, . . . , n, s = 1, 2, . . . ,m, (20)

qst = max{qs+1,t , qs,t+1 + psπ(t)},
t = n, . . . , 2, 1, s = m, . . . , 2, 1, (21)

where r0t = 0 = qm+1,t , t = 1, 2, . . . , n, rs0 = 0 = qs,n+1,
s = 1, 2, . . . ,m. Cmax(πv) for a single interchange v = (a, a + 1)
can be found in time O(m) from equations

Cmax(πv) = max
1≤s≤m

(es + qs,a+2), (22)

es = max{es−1, ds} + ps,π(a), s = 1, 2, . . . ,m, (23)

ds = max{ds−1, rs,a−1} + psπ(a+1), s = 1, 2, . . . ,m. (24)

Initial conditions are as follows : e0 = 0 = d0, rs0 = 0 =
qs,n+2, s = 1, 2, . . . ,m. The neighborhood API contains n − 1
solutions πv, v = (a, a + 1), a = 1, 2, . . . , n − 1, and is searched
conventionally in time O(n2m). By using the sequential accelerator
for API we can do it in time O(nm).

Theorem 6. For a fixed π the neighborhood API for F ‖ Cmax and
F ‖ Csum problems can be searched on the CREW PRAM machine in
time O(n+m) by using O(n

2m
n+m) processors.

Author's personal copy

W. Bożejko / J. Parallel Distrib. Comput. 69 (2009) 470–481 475

Proof. Skipping solution affinity we allocate for each πv the
number O(nmn+m) of processors which allows us to find all Cmax(πv)
in time O(n + m), see Theorem 2. The best solution in the
neighborhood can be found in time O(n) by using a single
processor. �

There is a dilemma to which version of sequential algorithm
should be compared with the parallel method — with or without
the sequential accelerator? If we take the best one (with
accelerator) then we have the following evaluation.

Fact 5. Speedup of the method from Theorem 6 is O(nmn+m),
efficiency is O(1n).

The presented method is not cost-optimal, its efficiency
quickly decreases along with growing n. Note that if the
sequential accelerator cannot be applied (as for the F ‖ Csum
problem), this method is cost-optimal with efficiency O(1).
Employing knowledge about relationship among solutions in the
neighborhood one can prove a significantly stronger result.

Theorem 7. For a fixedπ the neighborhood API for F ‖ Cmax problem
can be searched on the CREWPRAMmachine in timeO(n+m) by using
O(nmn+m) processors.

Proof. Let v = (a, a+1). We design a parallel algorithm using the
sequential accelerator for API. Values rst , qst are generated once:
at the beginning of the search, in time O(n + m) using O(nmn+m)
processors in a way analogous to that from the proof of Theorem 2.
This is a cost-optimal method. The process of overlooking of
the API neighborhood has been split into groups of cardinality⌈
n
p

⌉
each, where p =

⌈ nm
n+m

⌉
is the number of processors

used. Computations in each group are performed independently.
Processor k = 1, 2, . . . , p serves the group defined by v

v =

(
(k− 1)

⌈
n
p

⌉
+ a, (k− 1)

⌈
n
p

⌉
+ a+ 1

)
,

a = 1, 2, . . . ,
⌈
n
p

⌉
(25)

for k = 1, 2, . . . , p− 1, and

v =

(
(p− 1)

⌈
n
p

⌉
+ a, (p− 1)

⌈
n
p

⌉
+ a+ 1

)
, (26)

a = 1, 2, . . . , n− (p− 1)
⌈
n
p

⌉
− 1

for k = p. The last group can be incomplete. Since the
computational complexity of finding Cmax(πv) in single group
equals⌈
n
p

⌉
O(m) = O

(
nm
p

)
= O

(
nm
nm
n+m

)
= O(n+m),

then all Cmax(πv) can be found in the same time. Each processor,
while sequentially calculating its portion of Cmax(πv) values, can
simultaneously store the best solution in the group. To achieve this
aim it additionally makes⌈
n
p

⌉
− 1 = O

(
n
p

)
= O

(
n
nm
n+m

)
= O

(
n+m
m

)
(27)

comparisons to the best solution which has no influence on
the earlier provided computational complexity. Choosing the
best solution, among the whole API neighborhood, requires p
comparisons of best values found for all groups. This can be done in

timeO(log p) by using p = O(nmn+m) processors. The last fact follows
from the following sequence of inequalities

log p = log
⌈
nm
n+m

⌉
< log

(
nm
n+m

+ 1
)

= log
(
nm+ n+m
n+m

)
= log

(
(n+ 1)(m+ 1)− 1

n+m

)
= (log((n+ 1)(m+ 1)− 1))− log(n+m)
< log((n+ 1)(m+ 1))
= log(n+ 1)+ log(m+ 1) < n+ 1+m+ 1. � (28)

Fact 6. Speedup of the method from Theorem 7 is O(nmn+m),
efficiency is O(1).

3.3. The INS neighborhood

The neighborhood INS based on an insertion of elements in
the permutation has the computational complexity O(n3m) for the
searching. For the INS and the problem F ‖ Cmax there is the
sequential accelerator, see e.g. [8] which reduces this complexity to
O(n2m). We will show a stronger result for a parallel algorithm.

Theorem 8. For a fixed π the neighborhood INS for the F ‖ Cmax
problem can be searched on the CREWPRAMmachine in timeO(n+m)
by using O(n

2m
n+m) processors.

Proof. Let v = (a, b) define the INS neighborhood for a
permutation π as follows: the job π(a) has been removed from
its position and then it is inserted so that its new position in the
resulting permutation πv becomes b; a, b ∈ {1, . . . , n}, a 6= b. Let
rst , qst , s = 1, 2, . . . ,m, t = 1, 2, . . . , n − 1, be values found by
(20) and (21) for a permutation obtained from π by removing the
job π(a). For each fixed a = 1, 2, . . . , n values rst , qst can be found
in time O(n + m) by using O(nmn+m) processors in a way analogous

to Theorem 2. Employing O(n
2m
n+m) processors we can perform such

calculations in time O(n+m) for all permutations obtained fromπ
by removing the job π(a), a = 1, 2, . . . , n. For each fixed a values
Cmax(π(a,b)), b = 1, 2, . . . , n, b 6= a can be found using (22) in

timeO(m).We split thewhole computation process on p =
⌈
n2m
n+m

⌉
groups, each of which is assigned to a separate processor. Since
the INS neighborhood contains (n − 1)2 = O(n2) solutions, all
Cmax(πv) can be found in time

⌈
(n−1)2

p

⌉
O(m) = O(n+m). The best

solution in the neighborhood can be found in time O(log(n2)) =
O(2 log n) = O(log n) by using n processors. The whole method
possesses a complexity O(n+m+ log n) = O(n+m) and employs
O(n

2m
n+m) processors. �

Fact 7. Then speedup of the method from Theorem 8 is O(n
2m
n+m),

efficiency is O(1).

3.4. The NPI neighborhood

The neighborhood is generated by swapping any pair of
jobs π(a), π(b), for a, b ∈ {1, 2, . . . , n}, a 6= b. We start
from the description of a sequential accelerator [8], used in the
parallel version presented below. The direct method of searching
the neighborhood NPI possesses the computational complexity
O(n3m). The sequential accelerator for NPI reduces this complexity
to O(n2m).
Let v = (a, b), a 6= b define the move that generates a new

permutation πv . Without loss of generality we can assume that

Author's personal copy

476 W. Bożejko / J. Parallel Distrib. Comput. 69 (2009) 470–481

a < b, due to the symmetry. Next, let rst , qst , s = 1, 2, . . . ,m, t =
1, 2, . . . , n be values found by (20) and (21) for π . Denote by
Dxyst the length of the longest path between nodes (s, t) and (x, y)
in the grid graph G(π), [8]. The method of calculating Cmax(πv)
can be decomposed into the following steps. At the beginning we
calculate the length of the longest path which goes to the node
(s, a), and joins the job π(b) dislocated by v on the position a

ds = max{ds−1, rs,a−1} + ps,π(b), s = 1, 2, . . . ,m, (29)

where d0 = 0. Then, we calculate the length of the longest path
going to the node (s, b − 1), joining the part of G(π) located
between jobs on positions from a+ 1 to b− 1, invariant for G(π)

es = max1≤w≤s(dw + D
s,b−1
w,a+1), s = 1, 2, . . . ,m. (30)

In the successive step we calculate the length of the longest path
going to the node (s, b), joining the job π(a), put by v on position b

fs = max{fs−1, es} + ps,π(a), s = 1, 2, . . . ,m, (31)

where f0 = 0. Finally we obtain

Cmax(πv) = max1≤s≤m(fs + qs,b+1). (32)

The value of Cmax(πv) can be found if we have a suitable D
xy
st . These

values can be calculated recursively for the fixed t and y = t +
1, t + 2, . . . , n, by using this equality

Dx,y+1st = maxs≤k≤x

(
Dkyst +

x∑
i=k

piπ(y+1)

)
(33)

where Dxtst =
∑x
i=s piπ(t). The formula (33) can be re-written in the

form of

Ds,t+1st = Dstst + ps,π(t+1), Dx0st = D
0y
st = 0, (34)

Dx,y+1st = max{Dxyst ,D
x−1,y
st } + px,π(y+1), (35)

x = 1, 2, . . . ,m, y = 1, 2, . . . , n, which allows us to find all
Dxyst , x = 1, 2, . . . ,m, y = 1, 2, . . . , n for the fixed (s, t) in
time O(nm). Finally, the sequential calculation of all O(n2) values
Cmax(πv) (including all D

xy
st , x, s = 1, 2, . . . ,m, y, t = 1, 2, . . . , n)

can be processed in time O(n2m).

Theorem 9. For a fixed π the neighborhood NPI for the F ‖ Cmax
problem can be searched on the CREW PRAM machine in time O(nm)
by using O(n2m) processors.

Proof. We employ the parallel counterpart of a sequential
accelerator. Let each of n(n−1)2 elements of the neighborhood be
associated with stakes of O(m) processors. For the fixed (s, t),
and all x = 1, 2, . . . ,m, y = 1, 2, . . . , n, values Dxyst can be
found sequentially in time O(nm). Using O(nm) processors we can
calculate Dxyst for all x, s = 1, 2, . . . ,m, y, t = 1, 2, . . . , n in
time O(nm) once at the beginning. Let us analyze a calculation of
Cmax(πv) for fixed v. We have to compute the values ds in (29)
sequentially in time O(m). The maximum among m values in (30)
can be performed in parallel, for all s, by using O(m) processors
in time O(m). The formula (31) we calculate sequentially, for
each s, in time O(m). A single value Cmax(πv) in (32) requires m
independent adding operations and then finding the maximum
among m numbers. We carry this out sequentially in time O(m).
Finally, parallel computations of O(n2) values Cmax(πv) can be
performed in time O(m) by using O(n2m) processors. Since the
process of generatingDxyst had the complexityO(nm), this is the final
complexity of the whole method. �

Fact 8. The speedup of the method from the Theorem 9 is O(nm),
efficiency is O(1n).

4. Empirical tests

Computational experiments have been developed in two
directions: (1) determining the real speedup that is possible to
obtain using theorems from previous sections and (2) applying
these methods as an element of parallel metaheuristics.

4.1. Parallel cost function calculations

Theoretical results presented in the previous section assume
using practically a non-realizable CREW PRAM machine. It is
because of the synchronic nature of approaches proposed in
Theorems 1–9 that SIMD is the best model of real parallel
architecture. Vector-processing using the MMX instruction set, as
an implementation of SIMD, can be easily used here to check the
real speedup of the proposed methods.
Almost all PC computers exploited are furnished with proces-

sors equipped with the so-called extended instruction set MMX.
These special instructions allow one to make identical operations
simultaneously (therein mathematical) on the 2, 4 or 8 pairs of ar-
guments occupied accordingly by 4, 2, 1 bytes. The potential profits
can be evaluated as follows. Assuming that data and results are in-
tegers represented by k bytes, we can perform8/kmath operations
(e.g. sum, max) simultaneously for MMX processors. The theoreti-
cal speedup of calculations can be found from the formula:

stheor =
nm

dmk/8e(n+ 8/k)
. (36)

Let us see that for each vertex of the graph G(π) the calculation
processing comes in the same way accordingly to formulae 2.
Furthermore, the simple interchangeable enumeration e(i, j) =
(i + j − 1)m + j, i = 0, . . . ,m, j = 0, . . . , n assigns the
consecutive integers (indexes of the vector) to the elements of
the same cluster. To verify this let us take into account the mth
cluster as an example. This cluster consists of the following (i, j)
pairs : (1,m), (2,m− 1), . . . (m− 1, 2), (m, 1) and the following
enumeration:m2 +m,m2 +m− 1, . . . ,m2 + 2,m2 + 1.
Two procedures, Schedule (connected with Theorem 2) and

API (connected with Theorem 4), were coded in Visual C++ 2008
Express Edition. The first procedure determines the completion
times for the natural job order π = {1, . . . , n} and the second
procedure Cmax values for the API neighborhood. The procedures
were coded in the sequential version NPR and parallel version
PR. The MMX intrinsics were called by a suitable C++ function.
The compilation was optimized to obtain the maximum speed by
Visual C++ compiler. The computation runs on a PC machine with
Intel Core 2 Duo 2.66 GHz processor andWindows XP Professional
operating systemwith 1GB RAM. Processing and completion times
were coded as 16-bit integer values, which allows performing
parallel synchronic instructions on 4 data.
The first test was provided on the 5 groups of 10 instances.

All instances had the same number of jobs n = 100. The groups
varied in the number of machines m ∈ {4, 8, 12, 16, 20}. For each
group of instances themean calculation time (CPUs), speedup ratio
(sempiric) and theoretical speedup ratio ((stheor), given by formulae
(36))were calculated. They are shown in Table 1 and Fig. 5. Also, the
method of the API neighborhood searching based on the method
from the proof of Theorem 7 has been tested. The results of the
empirical speedup obtained is shown on Fig. 6.
The second test was conducted on the first 9 groups of

benchmark instances of the flow shop problem provided by
Taillard [15]. Each group n×m: 20× 5, 20× 10, 20× 20, 50× 5,
50× 10, 50× 20, 100× 5, 100× 10, 100× 20 consists of 10 hard
instances selected from a large number of randomly generated
problems. The computational results are shown in the Table 2 and
on Figs. 7 and 8.

Author's personal copy

W. Bożejko / J. Parallel Distrib. Comput. 69 (2009) 470–481 477

Table 1
Times of 106 natural schedule calculations.

Group Schedule API
CPUs Speedup Theoretical CPUs Speedup
NPR PR sempiric speedup stheo NPR PR sempiric

100× 4 2.6 1.2 2.17 3.85 20.4 8.5 2.40
100× 8 5.8 2.1 2.76 3.85 45.2 17.4 2.60
100× 12 9.6 3.5 2.74 3.85 70.7 25.6 2.76
100× 16 13.0 4.5 2.89 3.85 95.3 35.4 2.69
100× 20 16.7 5.5 3.04 3.85 121.1 45.5 2.66

Table 2
106 schedule calculations times for the Taillard’s benchmarks.

Group Schedule API
CPUs Speedup Theoretical CPUs Speedup
NPR PR sempiric speedup stheo NPR PR sempiric

20× 5 0.7 0.5 1.40 2.08 5.5 4.8 1.15
20× 10 1.6 0.8 2.00 2.78 11.8 6.9 1.71
20× 20 3.4 1.3 2.62 3.33 24.3 13.3 1.83
50× 5 1.8 1.1 1.64 2.31 13.5 9.7 1.39
50× 10 4.2 1.7 2.47 3.09 29.6 14.0 2.11
50× 20 8.6 2.8 3.07 3.70 61.8 24.7 2.50
100× 5 3.3 2.1 1.57 2.40 25.9 17.3 1.50
100× 10 8.0 3.5 2.29 3.21 58.0 25.7 2.26
100× 20 16.7 5.5 3.04 3.85 121.1 45.6 2.66

Fig. 5. Empirical speedup obtained for the cost function’s computation of the flow
shop Cmax instances n × m with constant n = 100 and m = 4, 8, 12, 16, 20.
Theoretical speedup was 3.85 for all these instances.

Fig. 6. Empirical speedup obtained for the API neighborhood searching for the
flow shop Cmax instances n × m with constant n = 100 and m = 4, 8, 12, 16, 20.
Theoretical speedup was 3.85 for all these instances.

As we can observe in Table 2, the results of empirical speedup
are greater for the largem values. The average relative percentage
deviation of the empirical speedup to the theoretical one(
(stheo − sempiric)/sempiric · 100%

)
equals 29% for the cost function

Fig. 7. Empirical and theoretical speedup obtained for the cost function’s
computation of the flow shop Cmax instances n × m with n = 20, 50, 100, m =
5, 10, 20.

Fig. 8. Empirical and theoretical speedup obtained for parallel API neighborhood
searching of the flow shopCmax instancesn×mwithn = 20, 50, 100,m = 5, 10, 20.

calculation (function Schedule) and 32% for the API neighborhood
search. For a constant number of jobs n = 100 (Table 1) these
values equal 26% and 36%, which means that the constant value
which is hidden in the O(m+ n) description is relatively small.

Author's personal copy

478 W. Bożejko / J. Parallel Distrib. Comput. 69 (2009) 470–481

4.2. Application: Scatter-search method

Methods proposed in previous sections were used as an
element of the local search metaheuristics, namely the scatter-
search method. The main idea of the scatter-search method is
presented in [7]. The algorithm is based on the idea of evaluation
of the so-called starting solutions set. In the classic version a
linear combination of the starting solution is used to construct a
new solution. In the case of a permutational representation of the
solution, the usage of a linear combination of permutations gives
us an object which is not a permutation. Therefore, in this paper
a path relinking procedure is used to construct a path from one
solution of the starting set to another solution from this set. The
best element of such a path is chosen as a candidate to add to the
starting solution set.

4.2.1. Path-relinking
The base of the path-relinking procedure, which connects two

solutions π1, π2 ∈ Π , is a multi-step crossover fusion (MSXF)
described by Reeves and Yamada [11]. Its idea is based on a
stochastic local search, starting from the π1 solution, to find a new
good solution where the other solution π1 is used as a reference
point.
The API neighborhood N(π) of the permutation (individual)

π is used and it is searched in parallel by the method from the
Theorem7. The distancemeasure d(π, σ) is defined as a number of
adjacent pairwise exchanges needed to transform the permutation
π into the permutation σ . Such a measure is known as Kendall’s τ
measure.

Algorithm 2 (Path-relinking Procedure).

Let π1, π2 be reference solutions. Set x = q = π1;
repeat
For each member yi ∈ N(π), calculate d(yi, π2);
Sort yi ∈ N(π) in ascending order of d(yi, π2);
repeat
Select yi from the N(π)with a probability inversely
proportional to the index i; Calculate F(yi); F ∈ {Cmax, Csum};
Accept yiwith probability 1 if F(yi) ≤ F(x),
and with probability PT (yi) = exp(

F(x)−F(yi)
T)

otherwise (T is the temperature);
Change the index of yi from i to n and the indices of
yk, k = i+ 1, . . . , n from k to k−1;

until yi is accepted;
x← yi;
if F(x) < F(q) then q← x;

until some termination condition is satisfied;
return q {q is the best solutions lying on the path from π1 to π2}.

The termination condition consisted in exceeding 100 iterations
by the path-relinking procedure, or achieving solution π2.

4.2.2. Parallel scatter-search algorithm
The parallel algorithm was designed to be executed on two

machines:

• the cluster of 152 dual-core Intel Xeon 2.4 GHz processors
connected by Gigabit Ethernet with 3Com SuperStack 3870
switches (for the F ‖ Csum problem),
• Silicon Graphics SGI Altix 3700 Bx2 with 128 Intel Itanium2
1.5 GHz processors and cache-coherent Non-Uniform Memory
Access (cc-NUMA), craylinks NUMAflex4 in fat tree topology
with the bandwidth 4.3 Gbps (for the F ‖ Cmax problem),

installed in the Wrocław Center of Networking and Supercomput-
ing. Both supercomputers have a distributed memory, where each
processor has its local cache memory (in the same node) which is
accessible in a very short time (compared to the access time to the
memory in another node). Taking into consideration this type of ar-
chitecture we choose a client-server model for the scatter-search
algorithmproposedhere,where calculations of path-relinking pro-
cedures are executed by processors on local data and communica-
tion takes place rarely to create a common set of new starting solu-
tions. The process of communication and evaluation of the starting
solutions set S is controlled by the processor number 0.We call this
model global.
For comparison a model without communication was also

implemented in which independent scatter-search threads are
executed in parallel. The result of such an algorithm is the best
solution from solutions generated by all the searching threads. We
call this model independent.
Both machines have processors with an extended instruction

set MMX, so it was possible to apply the Theorem 2 and
the Theorem 7 to parallelize cost function calculations and
neighborhood searching on the low level of computations as
parallel calculations inside each processor.
Algorithms were implemented in the C++ language using MPI

(mpich 1.2.7) library and executed under the OpenPBS batching
system which measures times of a processor’s usage.

Algorithm 3 (Parallel Scatter-Search Algorithm for the SIMD Model
Without Shared Memory).

par for p := 1 to number_of_processors do
for i := 1 to iter do
Step 1. if (p = 0) then {only processor number 0}

Generate a set of unrepeated starting
solutions S, |S| = n.
Broadcast a set S among all the processors.

else {other processors}
Receive from the processor 0 a set of
starting solutions S.

end if;
Step 2. For randomly chosen n/2 pair from the S

apply path relinking procedure to generate a
set S ′- of n/2 solutions which lies on paths.

Step 3. Apply local search procedure to improve
value of the cost function of solutions from the set S ′.

Step 4. if (p 6= 0) then
Send solutions from the set S ′ to processor 0

else {only processor number 0}
Receive sets S ′ from other processors
and add its elements to the set S

end if;
Step 5. Leave in the set S at most n

solutions by deleting the worst and
repeated solutions.
if|S| < n then
Add a new random solutions to the
set S such, that elements in the set
S does not duplicate and |S| = n.

end if;
end for;

end parfor.

4.2.3. Computer simulations
Tests were based on 50 instances with 100, . . . , 500 operations

(n×m = 20×5, 20×10, 20×20, 50×5, 50×10) due to Taillard [15],
taken from the OR-Library [10]. The results were compared to the

Author's personal copy

W. Bożejko / J. Parallel Distrib. Comput. 69 (2009) 470–481 479

Table 3
Values of APRD for parallel scatter-search algorithm for the F ‖ Cmax problem (global model). The sum of iterations number for all processors is 9600.

n×m Processors
1 2 4 8 16
iter = 9600 2 iter = 4800 iter = 2400 8 iter = 1200 iter = 600

20× 5 0.000% 0.000% 0.000% 0.000% 0.096%
20× 10 0.097% 0.060% 0.072% 0.131% 0.196%
20× 20 0.039% 0.035% 0.061% 0.062% 0.136%
50× 5 0.007% −0.001% −0.015% −0.001% 0.007%
50× 10 0.345% 0.104% 0.113% 0.123% 0.272%

Average 0.098% 0.029% 0.046% 0.063% 0.142%

ttotal (h:min:s) 30:04:40 15:52:13 7:40:51 3:35:47 1:42:50
tcpu (h:min:s) 30:05:02 31:44:21 30:41:54 28:45:30 27:24:58

Table 4
Values of APRD for parallel scatter-search algorithm for the F ‖ Cmax problem (independent model). The sum of iterations number for all processors is 9600.

n×m Processors
1 2 4 8 16
iter = 9600 2 iter = 4800 iter = 2400 8 iter = 1200 iter = 600

20× 5 0.000% 0.000% 0.000% 0.000% 0.096%
20× 10 0.097% 0.080% 0.066% 0.039% 0.109%
20× 20 0.039% 0.062% 0.048% 0.031% 0.031%
50× 5 0.007% 0.000% 0.007% 0.007% 0.000%
50× 10 0.345% 0.278% 0.148% 0.238% 0.344%

Average 0.098% 0.084% 0.054% 0.063% 0.097%

ttotal (h:min:s) 30:04:40 14:38:29 6:58:59 3:15:34 1:32:46
tcpu (h:min:s) 30:05:02 29:16:14 27:54:19 26:03:33 24:41:24

best known, taken from [10] for the F ‖ Cmax and from [11] for the
F ‖ Csum.
For each version of the scatter-search algorithm (global or

independent), the following metrics were calculated:

• ARPD — Average Percentage Relative Deviation to the bench-
mark’s cost function value where

PRD =
Fref − Falg
Fref

· 100%,

where Fref is the reference criterion function value from [10] for
the F ‖ Cmax and from [11] for the F ‖ Csum and Falg is the result
obtained by a parallel scatter-search algorithm. There were no
situations where Fref = 0 for the benchmark tests.
• ttotal(in seconds) — real time of executing the algorithm for 50
benchmark instances from [15],
• tcpu(in seconds) — the sum of times consumed on all processors
for 50 benchmark instances from [15].

Flow shop problem with makespan Cmax criterion. Tables 3
and 4 present results of computations of the parallel scatter-search
method for the number of iterations (as a sum of iterations on all
the processors) equals 9600. The cost of computations, understood
as a sum of the time consumed on all the processors, is about 7 h
for all 50 benchmark instances of the flow shop problem, so we
have about 8 min per instance for 1-processor implementation,
which is the acceptable time of solving big flow shop instances.
Let us note that the 16-processor version executes 600 iterations
per processor, which is not a lot. If we used a smaller number of
iterations it would be too few tomake a parallel program effective,
after a number of iterations for calculation stabilization, which
number is similar for the sequential and parallel algorithm.
The 2-processors version of the global model of the scatter-

search algorithm, with communication, has the best results
(average percentage deviations to the best known solutions),
which are 70.4% better comparing to the average 1-processor
implementation (0.029% vs 0.098%).

Flow shop problem with Csum criterion. A similar situation
takes place for the parallel scatter-search algorithm tests for the

F ‖ Csum problem. Tables 5 and 6 present results of computations,
for the global and independent model, for the number of iterations
(as a sum of iterations on all the processors) equals 16000, so
the 16-processor implementation executed 1000 iterations per
each processor. The best results are achieved for the 8-processors
version of the global model version of scatter-search and they
are 52.3% better than the results of the sequential scatter-search
algorithm (0.173% vs 0.363%).
The two new best-known solutions have been found for the

flow shop problem with Csum criterion during computational
experiments. The new upper bound for the tai42 instance is
83145 (the previous one was 83157, from [11]) and for tai50
instance the new one is 88106 (was 88215, [11]).

4.2.4. Speedup calculations
As we do not know the best algorithm for the flow shop

instances, it is impossible to use the strong speedup definition,
i.e. comparing the parallel run-time against the best-so-far
sequential algorithm. Therefore, we have to use the weak
definition of speedup. We cannot compute speedup against a
sequential scatter-search algorithm, since we compare different
algorithms. Hence, we turn to compare the same parallel scatter-
search algorithm on 1 versus p processors. Such a speedup is
known as the orthodox speedup (see Alba [1]).
Several authors reported superlinear speedup [2,5] cause of the

following sources:

• implementation source — the sequential algorithm is ineffi-
cient, i.e. uses data structures which can be managed faster by
the parallel algorithm,
• numerical source — the parallel algorithm finds a good solution
more quickly because it changes the order in which solution
space is searched compared to sequential algorithm,
• physical source — the parallel algorithm has more than a
simple increase in the computational power of CPUs, i.e. other
resources as the total size of a fast cache memory.

In this paper we observe a situation where the work performed
by parallel and sequential algorithms is different.

Author's personal copy

480 W. Bożejko / J. Parallel Distrib. Comput. 69 (2009) 470–481

Table 5
Values of APRD for parallel scatter-search algorithm for the F ‖ Csum problem (independent model). The sum of iterations number for all processors is 16000.

n×m Processors
1 2 4 8 16
iter = 16 000 2 iter = 8000 iter = 4000 8 iter = 2000 iter = 1000

20× 5 0.000 0.007 0.000 0.006 0.016
20× 10 0.000 0.000 0.000 0.000 0.000
20× 20 0.000 0.000 0.000 0.000 0.000
50× 5 0.904 1.037 0.906 0.903 0.933
50× 10 0.913 0.986 1.033 0.989 1.110

Average 0.363 0.406 0.388 0.380 0.412

ttotal (h:min:s) 75:27:40 37:40:08 18:38:23 9:06:24 4:28:57
tcpu (h:min:s) 75:25:48 75:02:51 74:10:18 72:19:26 70:57:24

Table 6
Values of APRD for parallel scatter-search algorithm for the F ‖ Csum problem (global model). The sum of iterations number for all processors is 16000.

n×m Processors
1 2 4 8 16
iter = 16 000 2 iter = 8000 iter = 4000 8 iter = 2000 iter = 1000

20× 5 0.000 0.000 0.000 0.008 0.007
20× 10 0.000 0.000 0.000 0.004 0.000
20× 20 0.000 0.000 0.000 0.000 0.000
50× 5 0.993 0.677 0.537 0.449 0.764
50× 10 1.103 0.648 0.474 0.404 0.734

Average 0.419 0.265 0.202 0.173 0.301

ttotal (h:min:s) 75:23:44 41:19:51 23:28:19 14:30:03 7:23:50
tcpu (h:min:s) 75:20:42 77:57:57 75:46:07 74:38:51 73:13:35

Flow shop with Cmax criterion. As the time consumed on
all the processors is a little bit longer than the time of the
sequential version, we can say that the speedup of this version
of the algorithm is almost-linear (see Tables 3 and 4). For the 4
and 8-processors implementation of the global model and for 2,4
and 8-processors implementations of the independent model the
average results of ARPD are better than ARPD of the 1-processors
versions, but the time consumed on all the processors (tcpu) is
shorter. So these algorithms obtain better results with a smaller
cost of computation - the orthodox speedup is superlinear.

Flow shop with Csum criterion. Also here the orthodox
superlinear speedup effect has been observed for the 8 and
16-processors implementations of the global model of parallel
scatter-search (see Tables 5 and 6). The total time consumed
from this implementations for all 50 instances (74:38:51 and
73:13:35, h:min:s) was smaller than the total time of sequential
algorithm execution (75:20:42). Such a situation takes place only
for the global model of the scatter-search algorithms: independent
searches are not so effective, both in results (ARPD) and speedup.
The superlinear speedup anomaly obtained here has a numeri-

cal source and it can be understood as the situation where the se-
quential algorithm may have to search a large portion of solutions
before finding a good one. A parallel algorithm may find the solu-
tion of similar quality more quickly due to the change in the order
in which the space is searched. This situation can be interpreted
in terms of diversification versus intensification of the search in
the solution space — a parallel algorithm can achieve better solu-
tions faster than a sequential algorithm as a result of the searching
process diversification in the first phase of the algorithm’s work
(due to the multiple-walk strategy) and intensification in the sec-
ond phase after finding a ‘good’ region by the one ofmultiple walk-
ing parallel searching threads.

5. Conclusions

The general approach to parallelization of the scheduling
algorithms for the flow shop problem has been described here.
In the single-thread the single-solution methods parallelization

derived from basic recursive formula led us to cost optimal
algorithms; other approaches own low efficiency although offer
high speed. Some results obtained in this section can be extended
to the EREW PRAM model. This observation follows from the fact
that problem data can be copied n times (this can be done in time
O(log n) usingO(n/ log n) processors in the initial phase), therefore
it is easy to modify algorithms in proofs of theorems to obtain
versions of the theorems for the EREWmodel.
In the single-thread neighborhood-search methods the whole

neighborhood can be searched in time of the same order what
for a single solution along with sufficiently increased number
of processors. This computational complexity appears to be an
obvious bound of the neighborhood analysis time.
In a multiple-thread search, represented by a parallel scatter-

search here, parallelization increases the quality of obtained
solutions keeping comparable costs of computation. The orthodox
superlinear speedup is observed in the global (cooperative) model
of parallelism.

Acknowledgments

The author wishes to thank referees for their detailed com-
ments and constructive criticisms of the initial draft.

Appendix. Subsequence generating

Lemma 1. All subsequences (j0, j1, . . . , jm) satisfying the condition
1 = j0 ≤ j1 ≤ · · · ≤ jm = n can be generated in time O(m) by using
the (n+m−2m−1) processor CREW PRAM machine.

Proof. The number of all such subsequences equals the num-
ber of m − 1-element combinations with repetition from
the n − 2-element set and it equals (n+m−2m−1). All subse-
quences can be generated on the CREW PRAM in time O(m) by
using a number of processors equals to the number of sub-
sequences, applying the tree-generating scheme. At the begin-
ning n processors generate n subsequences with the length 2:
(1, 1), (1, 2), . . . , (1, n). Next, on the base of just-generated sub-
sequences, n processors generate subsequences with the length 3

Author's personal copy

W. Bożejko / J. Parallel Distrib. Comput. 69 (2009) 470–481 481

in the form of: (1, 1, 1), (1, 1, 2), . . . , (1, 1, n); n − 1 proces-
sors generate subsequences with the length 3 in the form of:
(1, 2, 2), (1, 2, 3), . . . , (1, 2, n); n− 2 processors generate subse-
quenceswith the length 3which begins from (1,3), etc. On the next
level (in the second iteration) (n+3−23−1) = (

n+1
2) =

n(n+1)
2 proces-

sors are used. Subsequences are stored in the memory as lists with
pointers, so the generation of the next element of the list does not
need to copy previous elements but generating the next element
only and add the pointer to the previous element in time O(1). Fol-
lowing such amethod, afterm−1 iterations (n+m−2m−1) subsequences
with a lengthmwill be generated and connectedwith (n+m−2m−1)pro-
cessors which generate them (each processor connected with the
last generated element from the list with the pointer to the pre-
vious element of the list). In the m + 1-step each processor will
generate the last element of the subsequence, identical for all the
subsequences, jm = n. �

References

[1] E. Alba, Parallel Metaheuristics. A New Class of Algorithms, Wiley, 2005.
[2] E. Alba, A.J. Nebro, J.M. Troya, Heterogeneous computing and parallel
genetic algorithms, Journal of Parallel and Distributed Computing 62 (2002)
1362–1385.

[3] W. Bożejko, M. Wodecki, Parallel genetic algorithm for minimizing total
weighted completion time, in: Lecture Notes in Computer Science, vol. 3070,
Springer, 2004, pp. 400–405.

[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms,
MIT Press and McGraw-Hill, 1990.

[5] T.G. Crainic, M. Toulouse, Parallel strategies for meta-heuristics, in: F. Glover,
G. Cochenberger (Eds.), Handbook of Metaheuristics, Kluwer Academic
Publishers, Norwell, MA, 2003, pp. 475–514.

[6] J. Grabowski, J. Pempera, New block properties for the permutation flow shop
problem with application in tabu search, Journal of Operational Research
Society 52 (2000) 210–220.

[7] T. James, C. Rego, F. Glover, Sequential and parallel path-relinking algorithms
for the quadratic assignment problem, IEEE Intelligent Systems 20 (4) (2005)
58–65.

[8] E. Nowicki, C. Smutnicki, A fast tabu search algorithm for the permutation flow
shop problem, European Journal of Operational Research 91 (1996) 160–175.

[9] E. Nowicki, C. Smutnicki, Some aspects of scatter search in the flow-shop
problem, European Journal of Operational Research 169 (2006) 654–666.

[10] OR-Library: http://people.brunel.ac.uk/~mastjjb/jeb/info.html.
[11] C.R. Reeves, T. Yamada, Genetic algorithms, path relinking and the flowshop

sequencing problem, Evolutionary Computation 6 (1998) 45–60.
[12] K. Steinhöfel, A. Albrecht, C.K. Wong, Fast parallel heuristics for the job shop

scheduling problem, Computers and Operations Research 29 (2002) 151–169.
[13] E. Taillard, Robust taboo search for the quadratic assignment problem, Parallel

Computing 17 (1991) 443–455.
[14] E. Taillard, Parallel taboo search techniques for the job shop scheduling

problem, ORSA Journal on Computing 6 (1994) 108117.
[15] E. Taillard, Benchmarks for basic scheduling problems, European Journal of

Operational Research 64 (1993) 278–285.
[16] C. Wang, C. Chu, J. Proth, Heuristic approaches for n/m/F/ΣCi scheduling

problems, European Journal of Operational Research (1997) 636–644.

WojciechBożejko, assistant professor atWroclawUniver-
sity of Technology. He obtainedM.Sc. in University ofWro-
claw, Institute of Computer Science in 1999 and Ph.D. at
Wroclaw University of Technology, Institute of Computer
Engineering, Control and Robotics in 2003. He is an author
of over 70 papers in journals and conference proceedings
from the field of parallel processing, scheduling and op-
timization. He is also a reviewer of some journals in this
field. He is interested in parallel algorithms, discrete opti-
mization, scheduling and group theory. He is also a qual-
ified musician. He graduated from the Academy of Music

in Wroclaw in a specialization of the piano.

