
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Solving permutational routing problems by population-based metaheuristics

Wojciech Bo _zejko a,*, Mieczysław Wodecki b

a Wrocław University of Technology, Institute of Computer Engineering, Control and Robotics, Janiszewskiego 11-17, 50-372 Wrocław, Poland
b University of Wrocław, Institute of Computer Science, Joliot-Curie 15, 50-383 Wrocław, Poland

a r t i c l e i n f o

Article history:
Received 10 February 2008
Received in revised form 22 November 2008
Accepted 24 November 2008
Available online 6 December 2008

Keywords:
Metaheuristics
TSP
Single machine problem
TSP with due dates

a b s t r a c t

In this paper we consider two routing problems: traveling salesman problem (TSP, fundamental prob-
lem of the combinatorial optimization) and the TSP with times of traveling, times of processing and
due dates where the objective is to minimize the total weighted tardiness (TSPTWT). Since problems
are NP-hard in the strong sense, we propose a metaheuristic algorithm to determine a good sub-opti-
mal solution.

We present an algorithm based on the idea of researching and analyzing local optima.
TSP with times of traveling, times of processing and due dates, and with the total weighted tardi-

ness cost function is identical with the single machine total weighted tardiness problem with
sequence-dependent setup times. It was possible to find the new best known solutions for 81 of
120 benchmark instances of this scheduling problem using the method proposed here.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Discrete optimization methods are applied to time-dependent
systems if there are problems with production management and
job scheduling. One can encounter such problems while preparing
the travel itineraries for tourists, the optimal ways (e.g., traveling
salesman’s way), the schedule planning and the expert systems
connected with taking optimal decisions. Many of these deal with
determining optimal scheduling (permutation of some objects)
and usually they are NP-hard. They also have irregular goal func-
tions and very many local minima. Classic heuristic algorithms
(tabu search, simulated annealing and genetic algorithm) quickly
converge to a local minimum and the diversification of its search
process is difficult. We present a general population-based method
approach that can be used to find the approximate solutions of the
hard combinatorial optimization problems. These problems can be
described as follows: for a given finite set of feasible solutions, X,
the goal function F is defined as a mapping F : x! Rþ. The optimi-
zation problem aims at finding the optimal solution x� 2 X with

Fðx�Þ ¼minfFðxÞ : x 2 Xg:

Some representative examples of the permutation problems in-
clude the TSP and TSP with times of traveling, times of processing
and due dates, and with the total weighted tardiness cost function
(TSPTWT). For both these problems feasible solutions can be repre-
sented as permutations.

This kind of problems has both theoretical and practical
significance. They are NP-hard, so optimal solutions can be
obtained only in limited sizes of the problem. So metaheuris-
tic algorithm are commonly applied to obtain near-optimal
solutions. These problems are the most difficult interesting
from theoretical and important from the practical point of
view.

As we said we have adopted and tested PBM for these two NP-
hard permutational scheduling problems:

1. TSP,
2. TSP with total weighted tardiness cost function, with processing

times and due dates (TSPTWT).

We have used the benchmark tests taken form the TSP-Li-
brary (TSPLIB), and from the newest literature for the TSPTWT
(Cicirello & Smith, 2005). We have compared the obtained solu-
tions with the optimal ones or the best known. It was possible
to obtain very good solutions (with a very small percentage
deviation to the best known) by executing a considerably smal-
ler number of iterations and shortening the total calculation
time. It was also possible to improve the best solutions for the
TSPTWT, which is identified with the single machine total
weighted tardiness problem with sequence-dependent setup
times.

This paper is organized as follows: in the next section we intro-
duce problems. Next, in the Section 3, the elements of PBM are pre-
sented. The Section 4 includes the results of the computational
experiments for two strongly NP-hard problems. The final conclu-
sions are presented in the Section 5.

0360-8352/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cie.2008.11.022

* Corresponding author. Tel.: +48 71 320 2961.
E-mail addresses: wojciech.bozejko@pwr.wroc.pl (W. Bo _zejko), mwd@ii.uni.

wroc.pl (M. Wode).

Computers & Industrial Engineering 57 (2009) 269–276

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie

Author's personal copy

2. The problems

In this section we present three NP-hard optimization problems
of which solutions can be represented by a permutation.

2.1. Traveling salesman problem

The classical TSP is defined on an undirected graph G ¼ ðV ; EÞ,
where V ¼ f1;2; . . . ;ng is a vertex (cites) set and
E ¼ ffi; jg : i–j; i; j 2 Vg is an edge set. A non-negative cost (dis-
tance) matrix C ¼ ðci;jÞ is defined on E. The matrix C is symmetric
(ci;j ¼ cj;i; i; j 2 V) and satisfies the triangle inequality
(ci;j þ cj;k P ci;k; for all i; j; k 2 V). The problem deals with finding a
minimum length Hamiltonian cycle (a tour that passes through
each city exactly once, and returns to the starting city) on a G. Each
feasible solution of the TSP (a cycle including all the nodes of G) is a
permutation of elements of the set V. Let

LðdÞ ¼
Xn�1

j¼1

cdðjÞ;dðjþ1Þ þ cdðnÞ;dð1Þ;

be a length of the traveling salesman’s tour

d ¼ ðdð1Þ; dð2Þ; . . . ; dðn� 1Þ; dðnÞ; dð1ÞÞ; d 2 P

where P is a set of all permutations of elements of the set V.
The TSP belongs to a class of the NP-hard problems (Sahni &

Teogilo, 1976), however a solution of such a problem is usually
made using heuristic approach that converges to a locally optimal
solution (see Reinelt, 1994). A very popular and effective approach
to leaving such local optimum are the following methods: tabu
search (Knox, 1994), simulated annealing (Lo & Hus, 1998), neural
networks (Leung, Jin, & Xu, 2004) and evolutionary strategies (Tsai,
Tsai, & Tseng, 2004). Recent TSP studies using the exact methods
(branch and bound approach) are Fischetti and Toth (1997), and
Lysgaard (1999). TSP with processing times and due dates. Let us as-
sume that pi; i 2 m is the time of processing of the salesman in the
city i 2 m. Also, let the distance between cities be identified with
the time of travel. Let call by di a due date which is the latest time
to finish processing in the city i 2 m. If in some sequence of the cit-
ies visiting Ci is the moment of time of finishing processing in the
city i 2 m, than Ti ¼maxf0;Ci � dig we call lateness, and wiTi is the
penalty for lateness, where wi P 0 is a weight connected with the
city i 2 m. The goal is to minimize the total weighted tardiness.

In the further part of this paper we will consider the problem of
routing which can be modelled as a scheduling problem. It is
important to point out that it is exactly the same problem, but de-
scribed in the language of scheduling theory.

2.2. Single machine total weighted tardiness problem with sequence-
dependent setup times

The problem can be formulated as follows. Let N ¼ f1;2; . . . ;ng
be a set of n jobs which have to be processed, without an interrup-
tion, on one machine. This machine can process the most one job in
any time. For a job iði ¼ 1;2; . . . ;nÞ, let pi, wi, di be: a time of execut-
ing, a weight of the cost function and a deadline. Let sij be a setup
time which represents a time which is needed to prepare the ma-
chine for executing a job j after finishing executing a job i. Addi-
tionally, s0i is a time which is needed to prepare a machine for
executing the first job i (at the beginning of the machine work).
If a sequence of job’s executing is determined and
Ciði ¼ 1;2; . . . ;nÞ is a time of finishing executing a job i, then
Ti ¼maxf0; Ci � dig we call a tardiness, and fiðCiÞ ¼ wiTi a cost of
tardiness of a job i. The considered problem consists in determining
such a sequence of jobs’execution of jobs which minimizes a sum of
costs of tardiness, i.e.,

P
wiTi.

Let P be a set of permutations of elements from the set N. For a
permutation p 2 P by

FðpÞ ¼
Xn

i¼1

fpðiÞðCpðiÞÞ

we represent a cost of permutation p (i.e., a sum of costs of tardiness
when jobs are executed in a sequence determined by a permutation
p), where CpðiÞ ¼

Pi
j¼1ðspðj�1ÞpðjÞ þ ppðjÞÞ and pð0Þ ¼ 0. This problem

consists in determining a permutation p 2 P which has a minimal
sum of costs of tardiness.

This scheduling problem is denoted in literature as 1jsijj
P

wiTi

and it is strongly NP-hard, because 1k
P

wiTi (with sij ¼ 0) is
strongly NP-hard (see Lenstra, Rinnoy Kan, & Brucker, 1977). To
date the best construction heuristics for this problem has been
the apparent tardiness cost with setups (ATCS – Lee, Bhaskaran,
& Pinedo, 1997). Many metaheuristics have also been proposed.
Tan, Narasimban, Rubin, and Ragatz (2000) presented a compari-
son of four methods of solving the considered problem: branch
and bound, genetic search, random-start pair-wise interchange
and simulated anneling. Gagné, Price, and Gravel, 2002 compared
an ant colony optimization algorithm with other heuristics. Cici-
rello and Smith (2005) proposed benchmarks for the single ma-
chine total tardiness problem with sequence-dependent setups
by generated 120 instances and applied stochastic sampling ap-
proaches: limited discrepancy search (LDS), heuristic-biased sto-
chastic sampling (HBSS), value biased stochastic sampling (VBSS),
value biased stochastic sampling seeded hill-climber (VBSS-HS)
and Simulated Annealing. The best goal function value obtained
by their approaches was published in literature and presented at
http://www.ozone.ri.cmu.edu/benchmarks.html as the upper
bounds of the benchmark problems. These upper bounds were
next improved by Cicirello (2006) by genetic algorithm, Lin and
Ying (2006) by Tabu search, simulated annealing and genetic algo-
rithm, and Liao and Juan (2007) by an ant optimization.

In this paper we propose a method by which we have obtained
the new better upper bound values.

3. Population-based metaheuristics

We present a method which belongs to the population-based
approaches to solving combinatorial optimization problems
(COP), and which consists in determining and researching the local
minima. This (heuristic) method is based on the following observa-
tion. If there are the same elements in some positions in several
solutions, which are local minima, then these elements can be in
the same position in the optimal solution.

As we propose this method for solving problems in which a
solution is a permutation, that’s why in the next part of the paper
we identify these two terms.

The basic idea is to start with an initial population (any subset of
the solution space). Next, for each element of the population a local
optimization algorithm is applied (e.g., descending search algorithm
or a metaheuristics, see Potts & VanWassenhove, 1991) to determine
a local minimum. In this way we obtain a set of permutations – local
minima. If there is an element which is in the same position in sev-
eral permutations, then it is fixed in this position in the permutation,
and other positions and elements of permutations are still free. A
new population (a set of permutations) is generated by drawing free
elements in free positions (because there are fixed elements in fixed
positions). After determining a set of local minima (for the new pop-
ulation) we can increase the number of fixed elements. To prevent
from finishing the algorithm’s work after executing some number
of iterations (when all positions are fixed and there is nothing left
to draw), in each iteration”the oldest” fixed elements are set as free.
The skeleton of PBM is presented on the Fig. 1.

270 W. Bo _zejko, M. Wodecki / Computers & Industrial Engineering 57 (2009) 269–276

Author's personal copy

Let P be a set of all permutations of elements from the set
N ¼ f1;2; . . . ;ng and the function:

F : P! Rþ [f0g:

We consider a problem which consists in determining optimal
permutation p̂ 2 P. We use the following notation:

p� : sub-optimal permutation determined by the
algorithm,

g : number of elements in the population,
Pi : population in the iteration i of the algorithm,

Pi ¼ fp1;p2; . . . ;pgg,
LocalOptðpÞ : local optimization procedure to determine

local minimum, where p is a starting solution,
LMi : a set of local minima in iteration i,

LMi ¼ fp̂1; p̂2; . . . ; p̂gg, p̂j ¼ LocalOptðpjÞ,
pj 2 Pi; j ¼ 1;2; . . . ;g,

FSi : a set of fixed elements and positions in
permutations of population Pi,

FixSetðLMi; FSiÞ : a procedure which determines a set of fixed
elements and positions in the next iteration of
the PBM, FSiþ1 ¼ FixSetðLMi; FSiÞ,

NewPopulðFSiÞ : a procedure which generates a new population
in the next iteration of algorithm,
Piþ1 ¼ NewPopulðFSiÞ.

In any permutation p 2 Pi positions and elements which belong
to the set FSi (in iteration i) we call fixed, other elements and posi-
tions we call free.

The algorithm begins by creating an initial population P0 (and it
can be created randomly). We set a sub-optimal solution p� as the
best element of the population P0,

Fðp�Þ ¼minfFðbÞ : b 2 P0g

A new population of iteration iþ 1 (a set Piþ1Þ is generated as fol-
lows: for current population Pi a set of local minima LMi is deter-
mined (for each element p 2 Pi executing procedure LocalOptðpÞÞ.
Elements which are in the same positions in local minima are estab-
lished (procedure FixSetðLMi; FSiÞ), and a set of fixed elements and
positions FSiþ1 is generated. Each permutation of the new population
Piþ1 contains the fixed elements (in fixed positions) from the set
FSiþ1. Free elements are randomly drawn in the remaining free posi-
tions of permutation.

If permutation b 2 LMi exists and FðbÞ < Fðp�Þ, then we update p�

(p� b). The algorithm finishes after a fixed number of generations.
The general structure of the PBM for the permutation optimiza-

tion problem is given below.

Algorithm 1. Population-based metaheuristics (PBM)

Initialization:
P0 fp1;p2; . . . ;pgg; random creation of the initial

population
Fðp�Þ ¼minfFðbÞ : b 2 P0g thebestelementofthepopulation P0

i 0; the number of iteration
FS0 ;; a set of fixed elements and

positions
repeat

Determine a set of local minima
LMi fp̂1; p̂2; . . . ; p̂gg,
where
p̂j LocalOptðpjÞ, pj 2 Pi;

for j 1 to g do
if Fðp̂jÞ < Fðp�Þ then
p� p̂j;

end if;
end for;
Determine a set

FSiþ1 FixSetðLMi; FSiÞ
and generate a new population

Piþ1 NewPopulðFSiÞ;
i iþ 1;

until not Stop Criterion.

The algorithm stops (Stop Criterion) after executing the Max_iter
iterations or exceeding a fixed time. The complexity of the algo-
rithm depends on time-consuming of the local optimization algo-
rithm. Each other elements of the algorithm (FixSet, NewPopul,
etc.) possesses complexity OðnÞ.

3.1. Local optimization (LocalOpt procedure)

A fast method based on the local improvement is applied to
determine the local minima. The method begins with an initial

Start
iter:=0

Random population

Local optimization Descent Search

or Tabu Search

Auto-tune of the
parameters

Changing of the
element’s age

Deleting the
oldest elements

Inserting the
new elements

Determining
free elements
and positions

iter>Max_iter

No

Yes

iter:=iter+1

End

Fig. 1. Population-based metaheuristics PBM.

W. Bo _zejko, M. Wodecki / Computers & Industrial Engineering 57 (2009) 269–276 271

Author's personal copy

solution p0. In each iteration for the current solution pi the neigh-
borhood NðpiÞ is determined. Next, from the neighborhood the
best element piþ1 is chosen constituting the current solution in
the next iteration. The method is exhaustive.

Algorithm 2. Descent Search (DS)

Select a starting point p0;
pbest p0 i 0;
repeat

choose the best element b from the neighborhood NðpiÞ
according to a given criterion based on the
goal function’s value FðbÞ;
pi bi iþ 1;
if FðbÞ < FðpbestÞ then
pbest b;

until FðbÞ–FðpbestÞ.

A crucial ingredient of the local search algorithm is the defini-
tion of the neighborhood function in combination with the solution
representation. It is obvious that the choice of a good neighbor-
hood is one of the key elements of the neighborhood search meth-
od’s efficiency.

Traditionally a neighborhood of the solution p is a search space
which can be defined as a set of new solutions obtained from p by
exactly one move (a single perturbation of p). During the iterative
process, the current solution of the algorithm ‘‘moves” through the
solution space P from neighbor to neighbor. A move is evaluated
by comparing the goal function’s value of the current solution to
each single one of its neighbor.

The evolution of the solution pi; i ¼ 1;2; . . . ;g draws a trajec-
tory in the search space P. There exist many criteria for select-
ing the next solution piþ1 in the neighborhood of pi. If the
current solution is not worse that pi, i.e., Fðpiþ1Þ 6 FðpiÞ, then
this strategy is usually called a steepest descent strategy. The
main weakness of the descent algorithm is its inability to escape
from local minima (all elements in the neighborhood NðpiÞ are
worse than pi).

For any iteration of the local search algorithm a subset of moves
applicable to it is defined. This subset of moves generates a subset
of solutions – the neighborhood. Each move transforms a permuta-
tion (current solution) into another permutation from P.

Let k and l (k–l) be a pair of positions in a permutation

p ¼ ðpð1Þ;pð2Þ; . . . ;pðk� 1Þ;pðkÞ;pðkþ 1Þ; . . . ;

pðl� 1Þ;pðlÞ;pðlþ 1Þ; . . . ;pðnÞÞ

Among many types of moves considered in the literature three
of them appear prominently:

1. Insert move (i-move) consists in removing the job pðkÞ from the
position k and next insert it in a position l. Let us assume k 6 l.
Thus, the move generates a new permutation pk

l in the follow-
ing way:

pk
l ¼

pðiÞ if i < k or i > l;

pðiþ 1Þ if k < i 6 l;

pðkÞ if i ¼ l:

8><
>:

For k P l the permutation pk
l can be defined in a similar way as the

permutation obtained by moving element pðkÞ to the position be-
fore the element pðlÞ.
2. Swap move (s-move) in which the jobs if pðkÞ and pðlÞ are

swapped among some positions k and l. The move generates
the following permutation:

pk
l ¼

pðiÞ if i–k or i–l;

pðlÞ if i ¼ k;

pðkÞ if i ¼ l:

8><
>:

3. 2-opt in which the jobs from pðkÞ to pðlÞ are removed and
inserted in reverse order among some positions k and l. Let us
assume k 6 l. The move generates the following permutation:

pk
l ¼

pðiÞ if i < k or i > l;

pðl� iþ kÞ if k 6 i 6 l:

�

Computational complexity of executing i-move and 2-opt is
OðnÞ and O(1) of executing s-move.

In the implementation of the (LocalOptpjÞ pj 2 Pi procedure a
very quick descent search algorithm, described above, is applied.
The neighborhood is generated by swap moves (s-moves) for
the QAP and single machine problem and by 2-opt moves for
the TSP problem.

3.2. A set of fixed elements and position (FixSet procedure)

The set FSi (in iteration i) includes quadruples ða; l;a;uÞ, where a
is an element of the set N ¼ f1;2; . . . ;ng, l is a position in the permu-
tation (1 6 l 6 nÞ and a;u are attributes of a pair ða; lÞ. A parameter a
means ‘‘adaptation” and decides on inserting to the set, and u –‘‘age”
– decides on deleting from the set. Parameter u enables to set free a
fixed element after making a number of iterations of the algorithm.
However, a parameter a determines such a fraction of local minima
in which an element a is in position l.

Both of these parameters are described in a further part of this
chapter. The maximal number of elements in the set FSi is n. If the
quadruple ða; l;a;uÞ belongs to the set FSi, then there is an element
a in the position l in each permutation from the population Pi.

In each iteration of the algorithm, after determining local min-
ima (LocalOpt procedure), a new set FSiþ1 ¼ FSi is established. Next,

π π(2) π(3) π(4) π(5) π(6) π(7) … π(n)

fixed positions free positions

fixed elements

(1)

free elements

Fig. 2. Fixed and free positions and elements.

272 W. Bo _zejko, M. Wodecki / Computers & Industrial Engineering 57 (2009) 269–276

Author's personal copy

a FixSetðLMi; FSiÞ procedure is invoked in which the following oper-
ations are executed:

(1) modifying the age of each element,
(2) erasing the oldest elements,
(3) fixing the new elements.

There are two functions of acceptance U and C connected with
the operations of inserting and deleting. Function U is determined
by an auto-tune function. Function C is fixed experimentally as a
constant. The schema of the permutation with fixed and free ele-
ments is presented on the Fig. 2.

3.3. Fixing elements

Let Pi ¼ fp1;p2; . . . ;pgg be a population of g elements in the iter-
ation i. For each permutation pj 2 Pi, applying the local search algo-
rithm ((LocalOptpj) procedure), a set of local minima
LMi ¼ fp̂1; p̂2; . . . ; p̂gg is determined. For any permutation
p̂j ¼ ðp̂jð1Þ; p̂jð2Þ; . . . ; p̂jðnÞÞ, j ¼ 1;2; . . .g, let be nrða; lÞ ¼ jfp̂j 2 LMi

: p̂jðlÞ ¼ agj. It is a number of permutations from the set LMi in which
the element a is in the position l.

If a 2 N is a free element and

a ¼ nrða; lÞ
g

P UðiÞ

then the element a is fixed in the position l; u ¼ 1 and the quadruple
ða; l;a;uÞ is inserted to the set of fixed elements and positions,
that is

FSiþ1 FSiþ1 [fða; l;a;uÞg

3.4. Auto-tune of the acceptance level U

Acceptance function U is defined so that

8i; 0 < UðiÞ 6 1:

It is possible that no element is acceptable to be fixed in an iter-
ation. To prevent from it, an auto-tune procedure for U value is
proposed. In each iteration i, if

max
a;l2f1;2;...;ng

nrða; lÞ
g

< UðiÞ

therefore, UðiÞ value is fixed as

UðiÞ max
a;l2f1;2;...;ng

nrða; lÞ
g

� �;

where � is a small constant, e.g., � ¼ 0:05. In this way the value of UðiÞ
is decreased. Similarly, it is possible to increase this value when it is
too small (and too many elements are fixed in one iteration) such that
at least one element is fixed in each iteration.

3.5. Deleting elements

Each fixed element is released after executing some number
of iterations to makes testing a plenty of local minima possible.
In this implementation function CðiÞ is defined as a constant
equals 2, so each element of the set FSi is deleted after executing
two iterations.

3.6. Procedure NewPopul

Let a quadruple ða; l;a;uÞ 2 FSiþ1. Therefore in each permuta-
tion of a new population Piþ1 there exists an element a in a po-
sition l. Randomly drawn free elements will be inserted in

remaining (free) positions. Population Piþ1 is generated as
follows:

Algorithm 3. New Population ðNewPopulðFSiþ1ÞÞ

Piþ1 ;;
Determine a set of free elements
FE fa 2 N : –9ða; l;a;uÞ 2 FSiþ1g
and a set of free positions
FP fl : –9ða; l;a;uÞ 2 FSiþ1g;
for j to gdo

{Inserting fixed elements}
for every ða; l;a;uÞ 2 FSiþ1 do

pjðlÞ a;

end for;
W FE;

{Inserting free elements}
for s 1 to n do

if s 2 FP then
pjðsÞ w, where
w randomðWÞ and W W n fwg;

end for;
Piþ1 Piþ1 [fpjg.

end for.

A function random generates an element of the set W from the
uniform distribution. Computational complexity of the NewPopul
algorithm is linear.

3.7. Convergence of the method

We can select two levels in the proposed PBM method: (1)
non-deterministic, based on random search (random drawing
of individuals (permutations) in the population), and (2) deter-
ministic one, based on a local improvement method. The matter
of convergence of both of these methods has been considered in
the literature.

1. In the paper (Chia & Glynn, 2007) the authors prove the conver-
gence of the random search method showing asymptotic conver-
gence rate for this method in addition.

Table 1
Relative percentage deviations from the optimal or best known solutions and time for
the TSP – tests taken from the TSPLIB (1995). Percentage standard deviation rPBM over
10 runs.

Problem Meta-RaPS_TSP PBM_TSP

d tMetaRaPS dPBM
min dPBM

aver tPBM rPBM

lin105 0.00 20 0.00 0.05 7 0.334
pr107 0.00 139 0.00 0.26 8 0.289
pr124 0.00 49 0.07 0.31 10 0.303
bier127 0.90 48 0.58 0.58 12 0.383
pr136 0.39 73 0.47 0.78 15 0.332
pr152 0.00 178 0.04 0.14 19 0.128
KroA200 1.07 190 0.78 0.78 32 0.172
KroB200 1.26 134 0.91 1.51 31 0.322
pr226 0.23 357 0.27 0.62 39 0.248
pr264 1.58 824 0.05 0.05 51 0.082
pr299 2.01 766 1.35 2.05 123 0.307
pr439 3.29 2265 1.17 1.17 314 0.142
pr1002 6.04 7032 4.13 5.84 897 0.306

Average 1.29 944.8 0.76 1.09 119.8 0.256

tMetaRaPS – times of computation on the AMD 900 Mhz processor.
tPBM– times of computation on the Celeron 2.4 GHz processor.

W. Bo _zejko, M. Wodecki / Computers & Industrial Engineering 57 (2009) 269–276 273

Author's personal copy

2. In the paper (Hanafi, 2000) the author shows the method of cre-
ating a convergent local search algorithm (based on the tabu
search idea), showing convergence in a finite number of
iterations.

The methods which are applied on both levels (even indepen-
dently) are theoretically convergent. However, specific restric-
tions requested for theoretical convergence of algorithms
(included in works Chia & Glynn, 2007; Hanafi, 2000) makes
the method practically unimplementable (i.e., the memory of
all visited solutions). It shows the manner of building of theoret-
ically convergent PBM, but such an approach does not address
issues of implementation.

4. Computational experiments

PBM was implemented in the Microsoft Visual C++ 6.0 language
and executed on the Celeron 2.4 GHz personal computer (for TSP
problem instances) and Pentium IV 3.0 GHz personal computer
(for TSPTWT problem instances), both with 512 MB RAM memory.
Obtained results were compared to the best known solutions and
with results of other algorithms from the literature.

Value of functions C was set as a constant to CðiÞ ¼ 0:15. Size of
the population was set to 100 individuals. The algorithm stopped
after 50 iterations. For each version of the algorithm the following
metrics were calculated:

� d – percentage relative deviation to the benchmark’s cost func-
tion value where

d ¼ Falg � Fref

Fref
� 100%

where Fref is reference criterion function value (optimal or the best
known) taken from the literature and Falg is the result obtained by
PBM. There were no situations where Fref ¼ 0 for the benchmark
tests.
� APRD – average percentage relative deviation.
� rPBM – standard deviation of the obtained results. For 10 runs of

PBM (for each tested instance) we have obtained 10 results di,
i ¼ 1;2; . . . ;10. Then

rPBM ¼ 1
10

X10

i¼1

ðdi � APRDÞ2
 !1

2

:

� tAlg (in seconds) – real time of the algorithm execution.

4.1. TSP

The algorithm was tested on the benchmark instances ta-
ken from TSPLIB (1995) with number of cities from 105 to
1002. In the paper DePuy, Morga, and Whitehouse (2005)
there are comparative results of algorithm Meta-RaPS and
other 23 algorithms well known in literature. The fastest of
these algorithms is Meta-RaPS. We have used the same bench-
mark instances as in the paper DePuy et al. (2005). Table 1
includes comparisons of the calculations between PBM_TSP
and Meta-RaPS algorithms. Meta-RaPS algorithm was executed
on the AMD 900 MHz Athlon PC, which has 1397 MFLOPS
(WINTUNE98, 1998). Celeron 2.4 GHz, on which our algorithms

Table 2
Average improvement rates (%) of the SA, GA and TS approaches from Lin and Ying
(2006) compared to the proposed PBM approach for the benchmark instances of
Cicirello and Smith (2005) for the single machine total weighted tardiness problem
with setup times (TSP with processing times and due dates), n ¼ 60. Standard
deviation of the PBM results rPBM over 10 runs.

Problem set dSA dGA dTS dPBM tPBM rPBM

1–10 20.00 22.83 19.12 24.38 5.14 5.19
11–20 20.89 27.60 18.46 40.89 5.05 25.92
21–30 30.39 30.93 29.18 34.13 2.97 34.08
31–40 6.86 6.42 5.81 8.19 1.02 3.63
41–50 5.21 5.65 5.33 6.59 6.37 2.57
51–60 5.29 5.65 4.44 9.20 5.99 6.64
61–70 7.25 6.56 7.25 7.77 7.26 4.68
71–80 15.39 15.02 16.32 20.19 6.76 7.42
81–90 0.66 0.56 0.56 0.96 6.51 0.34
91–100 �0.47 �0.50 �0.11 1.11 5.90 1.31
101–110 0.60 0.24 0.64 3.06 6.60 0.53
111–120 �0.23 �0.44 �0.23 1.00 6.15 1.28

Average 9.32 9.97 8.90 13.12 5.48 7.80

0,
05 0,

26

0,
31 0,

58 0,
78

0,
14

0,
78

1,
51

0,
62

0,
05

2,
05

1,
17

5,
84

0,
00

0,
00 0,
07

0,
58

0,
47

0,
04

0,
78 0,
91

0,
27

0,
23

1,
35

1,
17

4,
13

0,
00

0,
00

0,
00

0,
90

0,
39

0,
00

1,
07 1,

26

0,
23

1,
58 2,

01

3,
29

6,
04

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

lin
10

5

pr
10

7

pr
12

4

bi
er

12
7

pr
13

6

pr
15

2

Kr
oA

20
0

Kr
oB

20
0

pr
22

6

pr
26

4

pr
29

9

pr
43

9

pr
10

02

instance

re
la

tiv
e

de
vi

at
io

n
[%

]

PBM_aver PBM_min Meta-RaPS

Fig. 3. Relative percentage deviations from the optimal or best known solutions for the TSP (instances taken from the TSPLIB).

274 W. Bo _zejko, M. Wodecki / Computers & Industrial Engineering 57 (2009) 269–276

Author's personal copy

were executed, has 2927 MFLOPS (WINTUNE98) so it is 2.1
times faster.

For each algorithm the percentage relative deviation r to the
optimal (or the best known) solution from literature has been cal-
culated. For the TSP these values are presented on TSPLIB web
page.

As we can see the PBM_TSP is much more faster (on average
3.75 times faster after converting the speed of AMD 900 and Cele-
ron 2.4 processors).

The average percentage deviations to optimal (or the best
known solutions) of the PBM_TSP is 1.09% and it is 15.5% lower
than in Meta-RaPS (DePuy, Morga, & Whitehouse, 2005). Compar-
ing execution time of both algorithms we are obtaining in average
119.8 s for PBM_TSP and 944.8 s for Meta-RaPS. Taking into consid-
eration that a computer with Celeron 2.4 GHz processor is 2.1
times faster than computer with AMD 900 MHz processor we can
say that PBM_TSP is also 3.75 times faster. Results of comparison
are given on the Fig. 3.

Table 3
Results of computational experiments for the problem 1jsijj

P
wiTi . The new 81 upper bounds are marked by a bold font. The d is counting based on the benchmark instances

values from Cicirello and Smith (2005).

No. FParPTM dPBMð%Þ tPBM No. FParPTM dPBMð%Þ tPBM

1 618 �36.81 4.84 61 76105 �4.73 7.09
2 5061 �22.01 5.05 62 44769 �6.46 7.41
3 1769 �24.66 5.30 63 75317 �4.45 7.00
4 6389 �23.13 5.28 64 92591 �3.93 7.20
5 4662 �16.84 5.13 65 126696 �6.07 6.74
6 7207 �12.58 5.34 66 59685 �6.82 7.55
7 3647 �16.10 5.23 67 29390 �15.79 7.42
8 143 �56.27 4.97 68 22120 �16.22 7.53
9 6482 �14.69 4.89 69 71118 �5.70 7.39

10 1943 �20.73 5.39 70 75102 �7.51 7.27
11 3898 �25.94 4.67 71 148230 �8.06 6.69
12 0 0.00 5.13 72 45543 �20.01 6.44
13 4929 �19.81 5.20 73 29045 �20.35 6.97
14 2967 �24.71 5.19 74 30503 �20.34 7.00
15 1321 �54.68 5.36 75 21602 �30.27 6.55
16 4326 �35.54 5.34 76 55378 �18.02 6.59
17 127 �72.51 4.61 77 33404 �17.64 6.88
18 1337 �46.82 5.16 78 20294 �19.16 7.06
19 0 �100.00 4.88 79 117596 �6.54 6.86
20 2983 �28.86 5.00 80 18620 �41.53 6.53
21 0 0.00 0.45 81 384383 �0.71 6.36
22 0 0.00 0.49 82 410257 �0.78 6.58
23 0 0.00 0.27 83 458844 �1.55 6.39
24 1051 �41.32 5.81 84 330022 �0.49 6.66
25 0 0.00 5.14 85 555065 �0.63 6.22
26 0 0.00 0.47 86 362677 �0.85 6.86
27 0 �100.00 5.47 87 398551 �1.11 6.78
28 0 �100.00 5.61 88 433244 �0.83 6.39
29 0 0.00 0.39 89 410739 �1.48 6.42
30 0 �100.00 5.67 90 402078 �1.19 6.47
31 0 0.00 0.42 91 342096 �1.46 6.33
32 0 0.00 0.50 92 361921 �1.05 5.75
33 0 0.00 0.45 93 407915 �0.62 6.02
34 0 0.00 0.44 94 333588 �0.81 5.59
35 0 0.00 0.44 95 521836 �1.15 5.38
36 0 0.00 0.52 96 462757 �0.35 5.94
37 436 �81.89 5.42 97 413089 �1.71 5.74
38 0 0.00 0.47 98 527603 �0.92 6.27
39 0 0.00 1.09 99 368353 �1.72 5.74
40 0 0.00 0.44 100 436004 �1.33 6.22
41 69252 �5.36 6.59 101 353018 �0.79 6.38
42 58111 �6.06 6.72 102 493072 �0.62 6.41
43 146510 �2.32 6.22 103 378864 �0.34 6.61
44 35462 �8.43 6.14 104 358033 �1.10 6.98
45 59085 �5.86 6.31 105 350806 �23.13 6.78
46 35080 �7.66 6.19 106 454769 �1.12 6.47
47 73412 �4.89 6.36 107 352766 �1.09 6.56
48 65011 �5.67 6.33 108 461828 �1.34 6.84
49 78005 �7.29 6.61 109 413004 �0.68 6.64
50 31764 �12.34 6.23 110 419437 �0.44 6.34
51 50459 �13.85 6.22 111 344532 �1.77 6.31
52 97052 �7.89 6.00 112 372287 �1.36 6.61
53 88952 �6.81 5.99 113 260093 �1.18 6.34
54 124229 0.54 5.63 114 469611 �0.76 5.77
55 67969 �11.00 5.69 115 463002 0.60 5.84
56 77051 �12.86 6.56 116 535967 �0.79 6.28
57 67339 �4.37 5.89 117 505416 �2.54 6.13
58 47184 �15.02 6.45 118 354576 �0.84 6.23
59 53409 �9.57 5.80 119 577318 �1.14 5.94
60 65111 �11.21 5.69 120 398723 �0.24 6.05

Average �13.12 5.48

W. Bo _zejko, M. Wodecki / Computers & Industrial Engineering 57 (2009) 269–276 275

Author's personal copy

4.2. TSP with processing times and due dates

As this problem is identified with the single machine total
weighted tardiness problem with sequence-dependent setup times,
computational experiments were done to compare the obtained re-
sults with the benchmarks from literature (Cicirello & Smith, 2005)
and the newest obtained results for this single machine problem
(Cicirello, 2006; Lin & Ying, 2006; Liao & Juan, 2007).

The problem instances from the benchmark set of Cicirello are
generated according to Lee et al. procedure (Lee et al., 1997). Each
problem instance is characterized by three parameters: the due-date
tightness factor s; the due-date range factor R; and the setup time
severity factor g. We consider problem sets characterized by the fol-
lowing parameter values: s ¼ f0:3;0:6;0:9g, R ¼ f0:25; 0:75g,
g ¼ f0:25;0:75g. For each of the twelve combinations of parameter
values we are obtaining 10 problem instances with 60 jobs each.

As we can see in Table 3 it was possible to find 81 (per 120)
new upper bounds of the optimal cost function for the single
machine total weighted tardiness problem with sequence-depen-
dent setup times (TSP with processing times and due dates) for
the benchmark instances from Cicirello and Smith (2005) and
upper bounds from Cicirello (2006), Lin and Ying (2006) and Liao
and Juan (2007). In the paper of Lin and Ying (2006), in which
there is a comparison of TS, GA and SA approaches, the average
running time of SA, GA, and TS was 21 s for each problem on the
Pentium IV 1.4 GHz machine (which has 170 MFLOPS in Java
Linpack benchmark; Dongarra, 1994).

For the PBM the average percentage deviation to the best
known solutions was on the level of �13;12% and the average
time of execution of one instance took 5.48 s on Pentium IV
3.0 GHz machine (262 MFLOPS in Java Linpack benchmark Don-
garra, 1994, so it is 1.54 times faster than Pentium IV 1.4 GHz).
So we can say PBM algorithm is in average 48% times faster than
algorithms of Lin and Ying (2006), obtaining better results. Results
of comparison are given in the Table 2 and on the Fig. 4.

Two new optimal solution has been found. For the benchmark’s
instance number 19 and 32 the optimal value of the cost function is
0 (optimality is proved because of non-negativeness of the cost
function).

5. Conclusions

We have discussed a new approach to the permutation optimiza-
tion problems based on the population-based metaheuristics. The

usage of the population with fixed features of local optima makes
the performance of the method much better than the iterative
improvement approaches, such as in tabu search, simulated anneal-
ing as well as classical genetic algorithms. Especially good results are
obtained for the problems in which significance is a position of an
element in a solution (i.e., TSP with due dates). The advantage is
especially visible for large problems.

References

Chia, Y. L., Glynn, P. W. (2007). Optimal convergence rate for random search. In
Proceedings of the 2007 INFORMS simulation society research workshop, <http://
www.informs-sim.org/2007informs-csworkshop/11.pdf>.

Cicirello, V. A. (2006). Non-wrapping order crossover: An order preserving crossover
operator that respect absolute position. In Proceedings of the 8th annual genetic
and evolutionary computation conference GECCO 2006. ACM Press.

Cicirello, V. A., & Smith, S. F. (2005). Enhancing stochastic search performance by
value-based randomization of heuristics. Journal of Heuristics, 11, 5–34.

DePuy, G. W., Morga, R. J., & Whitehouse, G. E. (2005). Meta-RaPS: A simple and
effective approach for solving the traveling salesman problem. Transportation
Research Part E, 41, 115–130.

Dongarra, J. J. (1994). Performance of various computers using standard linear
equations software, technical report CS-89-85, University of Tennessee.

Fischetti, M., & Toth, P. (1997). A polyhedral approach to the asymmetric traveling
salesman problem. Management Science, 43(11), 1520–1536.

Gagné, C., Price, W. L., & Gravel, M. (2002). Comparing an ACO algorithm with other
heuristics for the single machine scheduling problem with sequence-dependent
setup times. Journal of the Operational Research Society, 53, 895–906.

Hanafi, S. (2000). On the convergence of tabu search. Journal of Heuristics, 7, 47–58.
Knox, J. (1994). Tabu search performance on the symmetric traveling salesman

problem. Computers & Operations Research, 867–876.
Lee, Y. H., Bhaskaran, K., & Pinedo, M. (1997). A heuristic to minimize the total

weighted tardiness with sequence-dependent setups. IIE Transactions, 29, 45–52.
Lenstra, J. K., Rinnoy Kan, A. G. H., & Brucker, P. (1977). Complexity of machine

scheduling problems. Annals of Discrete Mathematics, 1, 343–362.
Leung, K.-S., Jin, H.-D., & Xu, Z.-B. (2004). An expanding self-organizing neural

network for the traveling salesman problem. Neurocomputing, 62, 267–292.
Liao, C.-J., & Juan, H. C. (2007). An ant opimization for single-machine tardiness

shceduling with sequence-dependent setups. Computers & Operations Research,
34, 1899–1909.

Lin, S., & Ying, K.-C. (2006). Solving single-machine total weighted tardiness problems
with sequence-dependent setup times by meta-heuristics. International Journal of
Advanced Manufacturing Technology. doi:10.1007/s00170-006-0693-1.

Lo, C. C., & Hus, C. C. (1998). Annealing framework with learning memory. IEEE
Transaction on System, Man, Cybernetics, Part A, 28(5), 1–13.

Lysgaard, J. (1999). Cluster based branching for the asymmetric traveling salesman
problem. European Journal of Operational Research, 119(2), 314325.

Potts, C. N., & Van Wassenhove, L. N. (1991). Single machine tardiness sequencing
heuristics. IIE Transactions, 23, 346–354.

Reinelt, G. (1994). The traveling salesman: Computational solutions for TSP
applications. Berlin: Springer.

Sahni, S., & Teogilo, G. (1976). P-complee approximation problems. Journal of the
Association for Computing Machinery, 23(3), 555–565.

-5,00

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

1
to

 1
0

11
 to

 2
0

21
 to

 3
0

31
 to

 4
0

41
 to

 5
0

51
 to

 6
0

61
 to

 7
0

71
 to

 8
0

81
 to

 9
0

91
 to

 1
00

10
1

to
 1

10

11
1

to
 1

20

Problem set

re
la

tiv
e

im
pr

ov
em

en
t [

%
]

SA GA TS PBM

Fig. 4. Relative improvement rates of the optimal or best known solutions for the TSPTWT (instances from Cicirello & Smith, 2005).

276 W. Bo _zejko, M. Wodecki / Computers & Industrial Engineering 57 (2009) 269–276

