THE 25th INTERNATIONAL SYMPOSIUM ON AUTOMATION AND ROBOTICS IN CONSTRUCTION
ISARC-2008

SELECTED PAPERS
Edited by E. K. Zavadskas, A. Kaklauskas, M. J. Skibniewski

June 26–29, 2008
Vilnius, Lithuania

Organized by:

The International Association for Automation and Robotics in Construction
Vilnius Gediminas Technical University, Institute of Internet and Intelligent Technologies
International Council for Research and Innovation in Building and Construction
Lithuanian Academy of Sciences
Russian Academy of Engineering
International Academy of Engineering

Vilnius „Technika" 2008

This publication is the Proceedings of the 25th International Symposium on Automation and Robotics in Construction (ISARC-2008) edited by E. K. Zavadskas, A. Kaklauskas, M. J. Skibniewski. The 25th International Symposium was held on June 26–29, 2008 in Vilnius, Lithuania and organized by: the International Association for Automation and Robotics in Construction, Vilnius Gediminas Technical University, Institute of Internet and Intelligent Technologies, International Council for Research and Innovation in Building and Construction, Lithuanian Academy of Sciences, Russian Academy of Engineering and International Academy of Engineering. The Proceedings include 124 manuscripts from 22 countries authored by leading international researchers in construction automation and robotics who were in attendance at this international meeting.

The manuscripts were presented during 9 sessions.

All papers were peer reviewed.

Knygos leidybą rėmė Lietuvos Respublikos švietimo ir mokslo ministerija, Lietuvos valstybinis mokslo ir studijų fondas, Rusijos inžinerinė akademija ir Tarptautinė inžinerinė akademija

Sponsored by Ministry of Education and Science of Republic of Lithuania, Lithuanian State Science and Studies foundation, Russian Academy of Engineering and International Academy of Engineering

http://vgtu.leidykla.lt
VGTU leidyklos Technika 1505-M mokslo literatūros knyga

© Vilnius Gediminas Technical University, 2008
© VGTU leidykla TECHNIKA, 2007

The 25th International Symposium on Automation and Robotics in Construction (ISARC-2008)
Selected papers (June 26–29, 2008, Vilnius, Lithuania)

2008 06 11. 113,5 sp. 1. Tiražas 150 egz.
Vilniaus Gedimino technikos universiteto leidykla „Technika“, Saulėtekio al. 11
10223 Vilnius, http://vgtu.leidykla.lt
Spausdino UAB „Baltijos kopija“
Kareivių g. 13B, 09109 Vilnius, http://www.kopija.lt
DEVELOPMENT OF TIME COUPLINGS METHOD USING EVOLUTIONARY ALGORITHMS

Magdalena Rogalska
Lublin University of Technology
ul. Nadbystrzycka 40, 20-950 Lublin, Poland
e-mail: rogalska@akropolis.pl

Wojciech Bożejko, Zdzisław Hejducki
Wrocław University of Technology
Wybrzeże Wyspianskiego 27, 50-370 Wrocław, Poland, e-mail: wojciech.bozejko@pwr.wroc.pl

Mieczysław Wodecki
Institute of Computer Science, University of Wrocław
Juliot-Curie 15, 50-383 Wrocław, Poland.
e-mail: mwd@ii.uni.wroc.pl

ABSTRACT
The article presents the results of a computation experiment in which a genetic algorithm (GA) and a hybrid evolutionary algorithm (HEA) were used. The respective results are compared for an objective function describing employment level regularity. It has been demonstrated that evolutionary algorithms can be used for optimizing demand for resources (workers) in time coupling methods.

KEYWORDS
evolutionary algorithm, genetic algorithm, time coupling method TCM

1. INTRODUCTION
The article presents in a concise way the Time Couplings Method (TCM) devised by Victor A. Afanasjev[1]. The main aim is to acquaint the general public of scientists in the world with TCM. So far this subject has been presented in an academic way, which made its comprehension difficult and constituted a barrier for a larger readership. In contrast, TCM computations performed using the ORGANIZATOR program are simple and quick. Considering the lack of international publications on TCM, we present the general idea of the method, the stages in its development and the way of computing the main. A calculation example is provided. The current development of TCM with regard to new applications is described.

Linear scheduling methods (LSM), referred to as TCM (Time Couplings Method) in Central and East European Countries, stem from the course of construction work, based on the division of a project into sectors. Because of the nature of construction work, the two varieties of linear scheduling methods
have been developing in parallel despite the iron curtain between the East of Europe and the rest of the world. It is precisely the natural connection between practical methods and their scientific description that caused the parallel development of the methods in Russia and Poland and in such countries as Canada and the USA. One of the followers of M.S. Budnikov (1961) was V.A. Afanasjev (1957, 1988, 2000) who in a scientific way described work carried out in accordance with LSM, assuming sectors of different size and so different task realization times for particular gangs. All the necessary calculations could be done manually but they were laborious and time-consuming. In the late 1970s the methods were adapted for the use on RlAD computers. Juliusz Mrozowicz (1982) was the first one to propagate LSM in Poland. He introduced a LSM systematics in Polish and presented LSM assumptions, terminology and calculation methods. Zdzisław Hejducki (1999, 2000, 2001, 2003, 2004) improved LSM by introducing task optimisation and reduction. He described in a scientific way the process commencement time, duration and completion time computing algorithms for different constraints.

Scheduling of construction projects by the Time Couplings Method (time couplings are interdependences between activities and sectors, which take resource and technical limitations into account), first developed by Victor A. Afanasjev and applied by him to a military airfield construction project in the USSR in 1946, has not been presented internationally because of the Soviet Union’s separatistic policies and secretiveness and because this was not required by that country’s scientific community. Despite its numerous applications in Eastern Europe the method is unknown in the world. Due to the lack of a basic publication which would explain the method’s fundamentals, papers describing its advanced aspects cannot be published in international journals.

TCM’s main advantage is that time couplings (not only total project time T but also all the interconnections) can be computed using the ORGANIZATOR software. The drawbacks are that only one contractor can work in one sector at the same time and the ORGANIZATOR program’s capacity is limited to 20 sectors and 20 activities. It is, however, possible to combine two or more computing sequences.

The optimization problem is as follows: for an assigned construction project lead time the best (according to the adopted optimization criterion) employment level must be found. One of the optimization criteria can be to include the average demand for resources in the constructed objective function. In order to search for a minimum demand one can adopt the average deviation from the daily demand as a measure of the unevenness of the demand for workers.

In contradiction to the above methods, in TCM the way in which the project is to be carried out: method 1 – no work stoppages, method 2 – no stoppages in sectors, method 3 – minimum lead time and possible work and sector stoppages, methods 4, 5, 6 – minimum time and additional constraints is assumed for the calculations. Currently research focuses on hybrid methods of optimising complex construction processes. Packages of processes described by TCM, LSM, LOB, genetic algorithms, neural networks and bar-charts are incorporated into one schedule. This work is the continuation of author’s research on constructing efficient algorithms to solve hard problems of management which can be applied in construction (Bożejko and Wodecki (2005)).

2. PRINCIPLES OF TCM APPLICATION

As described in [1], in order to begin scheduling by TCM one should have:

- input data specifying the division of a project into sectors S1.....Sn (a sector is a part of land or building, a fragment of a pipeline, etc.) and the size of the latter,
- specified kinds of activities and the technological sequence (determined by the technology used) in which they are to be carried out,
- deterministically fixed (determined on the basis of catalogue data which in Poland are collected in the Catalogue of Labour Standards) times of performing the activities in each sector.

As a result of TCM computations the following are obtained:

- a work schedule,
- networks of dependences,
- a table of internal dependences between the start and finish times of the particular activities in the sectors.

3. COMPUTATION EXPERIMENT OF TCM – CASE STUDY

The numerical data for the optimization calculations are for a complex of 12 building structures on which 9 construction processes are to be carried out. The project is represented by a matrix of construction process (r = 9) durations for the structures (f = 12). The work duration matrix elements were based on bills of quantities for a housing complex. Time coupling method TCM III was used to determine the construction project cycle (T = 216 working days). The method allows one to identify a sequence of critical processes and fix noncritical work commencement and completion dates. Owing to the changeable position of the jobs along the time axis one can optimize the employment level according to the adopted objective function.

The optimization problem is as follows: for an assigned construction project lead time the best (according to the adopted optimization criterion) employment level must be found. One of the optimization criteria can be to include the average demand for resources in the constructed objective function. In order to search for a minimum demand one can adopt the average deviation from the daily demand as a measure of the unevenness of the demand for workers.

\[f(x)=\frac{1}{T}\sum_{j=1}^{T}\left|g_j(x)-\bar{r}_{ag}\right| \]

where:
the average number of workers employed on each of the T days.

$$r_{avg} = \frac{1}{T} \sum_{i=1}^{n} d_i f_i$$ \hspace{1cm} (2)$$

the vector of the tasks' starting times,

$x \in \mathbb{R}^n$
x = $(x_1, x_2, ..., x_n)$ - the vector of the tasks' starting times,

$x_i \in [a_i, b_i]$
a$_i$ - the earliest time of starting task i,
b$_i$ - the latest time of starting task i,

$q_j(x)$ - the number of persons employed on day j, $j = 1, 2, ..., T$ - a time horizon,

d_i - duration of process i

r_i - the number of persons employed to carry out process i.

In order to carry out optimization calculations one must calculate the objective function for each iteration. The function can be calculated as the average percentage deviation of the daily number of employed persons from the average employment during all the T days, i.e. $f(x) \in [0,1]$ for a standard objective function.

4. BASIC PROPERTIES OF HYBRID EVOLUTIONARY ALGORITHM

The algorithm [7] starts with the (random) creation of initial population P^0. The best member of population P^0 is adopted as suboptimal solution π^*. Let i be an algorithm iteration number. New population P^{i+1} (i.e. set P^{i+1}) is generated as follows. For current population P^i a set of local minima (LM^i) is fixed (by carrying out the $LocalOpt(\pi)$ procedure for each element $\pi \in P^i$). Elements which occur in the same positions at the local minima are fixed (procedure $FixSet(LM^i, FS^i)$) and a set of fixed elements and positions (FS^{i+1}) is created. Each permutation of new population P^{i+1} has fixed elements (in fixed positions) from set FS^{i+1}. Free elements are randomly assigned to the remaining (free) positions. If permutations $\beta \in LM^i$ and $F(\beta) < F(\pi^*)$ exist, then β is adopted for permutation π^*. The algorithm ends after a predetermined number of generations have been generated.

Hybrid Evolutionary Algorithm (HEA)

Initialization: randomly created population $P^0 = \{\pi_1, \pi_2, ..., \pi_n\}$;

π^* = the best member of population P^0;

the number of iteration $i=0$; $FS^0 = \emptyset$;

repeat

Fix local minima set $LM^i = \{\hat{\pi}_1, \hat{\pi}_2, ..., \hat{\pi}_n\}$, where $\pi_j = LocalOpt(\pi_j), \pi_j \in P^j$;

for $j := 1$ to n do if $F(\hat{\pi}_j) < F(\pi^*)$ then $\pi^* \leftarrow \hat{\pi}_j$;

Fix set $FS^{i+1} = FixSet(LM^i, FS^i)$ and generate new population $P^{i+1} = NewPopulation(FS^i)$;

$i = i + 1$;

until not StopCriterion;
5. CONCLUSION

An optimization problem (12*9, \(T = 216 \) working days) concerning employment level planning for an assigned construction project lead time was computed using a genetic algorithm (GA) and a hybrid evolutionary algorithm (HEA) [2,3]. After 100 000 iterations using GA, objective function \(f=1564.999 \) and the average percentage deviation of the daily number of employed persons from the average employment for all the \(T \) days amounting to 0.312375 were obtained (Figure 2). After 100 000 iterations using HEA, the objective function was \(f=1508.139 \) and the average deviation amounted to 0.301198 (Figure 1). Thanks to the use of the evolutionary algorithm the result improved by 3.57%.

It has been demonstrated that evolutionary algorithms [4,5,6,7] can be used for optimizing demand for resources (workers) in time coupling methods (TCM)[1]. It is also possible to employ
metaheuristic (simulated annealing and taboo search) algorithms and evolutionary algorithms to solve task scheduling problems in TCM. The research into this possibility is underway.

REFERENCES

