Parallel population training metaheuristics for
the routing problem

Wojciech Bozejko' and Mieczystaw Wodecki?

! Institute of Computer Engineering, Control and Robotics,
Wroctaw University of Technology
Janiszewskiego 11-17, 50-372 Wroclaw, Poland
email: wojciech.bozejko@pwr.wroc.pl
2 Institute of Computer Science, University of Wroclaw
Joliot-Curie 15, 50-383 Wroctaw, Poland
email: mwd@ii.uni.wroc.pl

Abstract. In the paper we propose a parallel population training meta-
heuristics for solving TSP with times of traveling, times of processing and
due dates, which can be formulated as a single machine scheduling prob-
lem with total weighted tardiness criterion and sequence-dependent setup
times. Since the problems is NP-hard in the strong sense, we propose a
metaheuristic algorithm to determine a good suboptimal solution. Cal-
culations on the representative group of benchmark instances were done
and results were compared with the best known from literature. Obtained
solutions were better than benchmark ones for almost all instances.

1 Introduction

The problem which is considered here can be formulated both as a routing
problem and single machine scheduling problem. Let us assume, that p;, + € V
is the time of processing of the salesman in the city i € V. Also let the distance
between cities is identify with the time of travel. Let call by d; a due date, the
latest time to finishing processing in the city ¢ € V. If in some sequence of the
cities visiting C; is the moment of time of finishing processing in the city i € V,
than T; = max{0,C; — d;} we call lateness, and w;T; is the penalty for lateness,
where w; > 0 is a weight connected with the city ¢ € V. The goal is to minimize
the total weighted tardiness.

In the further part of the paper we will consider this problem of routing
which can be modelled as a scheduling problem. It is denoted in literature as
1]s;5]1 > w;T; and it is strongly NP-hard,. To date the best construction heuris-
tics for this problem has been the Apparent Tardiness Cost with Setups (ATCS
— Lee, Bhaskaran and Pinedo [5]). Many metaheuristics have also been pro-
posed. Tan et al. [8] presented a comparison of four methods of solving the
considered problem: Branch and Bound, Genetic Search, random-start pair-wise
interchange and Simulated Annealing. Gagné, Price and Gravel [4] compared
the Ant Colony Optimization algorithm with other heuristics. Cicirello and
Smith [2] proposed benchmarks for the single machine total tardiness problem

with sequence-dependent setups by generated 120 instances and applied stochas-
tic sampling approaches: Limited Discrepancy Search (LDS), Heuristic-Biased
Stochastic Sampling (HBSS), Value Biased Stochastic Sampling (VBSS), Value
Biased Stochastic Sampling seeded Hill-Climber (VBSS-HS) and Simulated An-
nealing. The best goal function value obtained by their approaches was published
in literature and presented at http://www.ozone.ri.cmu.edu/benchmarks.html as
the upper bounds of the benchmark problems. These upper bounds were next
improved by Cicirello [3] by Genetic Algorithm, Lin and Ying [7] by Tabu Search,
Simulated Annealing and Genetic Algorithm, and Liao and Juan [6] by the Ant
Optimization.

In this paper we propose a method by which we have obtained the new better
upper bound values. It is based on the idea which we introduced in the paper [1].

2 Definition of the problem

Let N = {1,2,...,n be a set of n jobs which have to be processed, without an
interruption, on one machine. This machine can process at the most one job in
any time. For a job i (i = 1,2,...,n), let p;,w;,d; be: a time of executing, a
weight of the cost function and a deadline. Let s;; be a setup time representing a
time which is needed to prepare the machine for executing a job j after finishing
executing a job i. Additionally sg; is a time which is needed to prepare a machine
for executing the first job i (at the beginning of the machine work). If a sequence
of job’s executing is determined and C; (i =1,2,...,n) is a time of finishing
executing a job ¢, then T;= max{0, C; —d;} we call a tardiness, and f;(C;) = w;T;
a cost of tardiness of a job i. The considered problem consists in determining
such a sequence of executing of jobs which minimizes a sum of costs of tardiness,
ie. Y wT;.

Let IT be a set of permutations of elements from the set V. For a permutation
w € Il by

1=1

we represent a cost of permutation 7 (i.e. a sum of costs of tardiness when jobs
are executed in a sequence determined by a permutation 7), where Cr;) =
Z;zl (Sx(j—1)n(j) + P=(j)) and 7(0) = 0. The considered problem consists in
determining a permutation 7w € IT which has a minimal sum of costs of tardiness.

3 Population Training Metaheuristics

We present a method belonging to the population training approaches which con-
sists in determining and researching the local minima. This (heuristic) method
is based on the following observation. If there are the same elements in some
positions in several solutions, which are local minima, then these elements can
be in the same position in the optimal solution.

Because we propose this method for solving problems, in which a solution is
a permutation that’s why in the next part of the paper we identify these two
terms.

The basic idea is to start with an initial population (any subset of the solution
space). Next, for each element of the population, a local optimization algorithm
is applied (e.g. descending search algorithm or a metaheuristics) to determine a
local minimum. In this way we obtain a set of permutations — local minima. If
there is an element which is in the same position in several permutations, than
it is fixed in this position in the permutation and other positions and elements of
permutations are still free. A new population (a set of permutations) is generated
by drawing free elements in free positions (because there are fixed elements in
fixed positions). After determining a set of local minima (for the new population)
we can increase the number of fixed elements. To prevent from finishing the
algorithm’s work after executing some number of iterations (when all positions
are fixed and there is nothing left to draw) in each iteration ”the oldest” fixed
elements are set as free.

Let IT be a set of all permutations of elements from the set N = {1,2,...,n}
and the function:

F:II — RTuU{o0}.

We consider a problem which consists in determining optimal permutation 7 €
II. We use the following notation: 7* — sub-optimal permutation determined by
the algorithm, K — number of elements in the population, P? — population in
the iteration i of the algorithm, P’ = {m,mo, ... ,mx}, LocalOpt(w) — local
optimization procedure to determine local minimum, where 7 is a starting so-
lution, LM® — a set of local minima in iteration i, LM® = {#, &2, ... , 7K},
#t; = LocalOpt(r;), m; € P, j = 1,2, .. ,K, FS" — a set of fixed elements
and position in permutations of population P!, FizSet(LM® FS%) — a proce-
dure which determines a set of fixed elements and positions in the next iter-
ation of the population training metaheuristics, F St = FizSet(LM* FS?),
NewPopul(FS*) — a procedure which generates a new population in the next
iteration of algorithm, P = NewPopul(FS"*).

In any permutation 7 € P? positions and elements which belong to the set
FS? (in iteration i) we call fized, other elements and positions we call free.

The algorithm begins by creating an initial population P° (and it can be
created randomly). We set a sub-optimal solution 7* as the best element of the
population PV,

F(r*) =min{F(B3) : € P°}.

A new population of iteration i + 1 (a set PiT!) is generated as follows: for
a current population P! a set of local minima LM? is determined (for each
element m € P? executing procedure LocalOpt(r)). Elements which are in the
same positions in local minima are established (procedure FizSet(LM?®, FS%)),
and a set of fixed elements and positions F'S**! is generated. Each permutation
of the new population P‘™! contains the fixed elements (in fixed positions) from
the set FS'T1. Free elements are randomly drawn in the remaining free positions
of permutation.

If permutation 8 € LM? exists and F(8) < F(r*), then we update 7* (7% « 3).
The algorithm finishes (Stop Criterion) after executing the Maz_iter iterations.

4 Parallel Population Training Metaheuristics (ParPTM)

For the parallel version of the PTM two models of parallelization have been
proposed.
Single-thread model. This model executes multiple population training meta-
heuristics which synchronize populations in each iteration, i.e. common global
table of the fixed elements and positions is used for each processor. In every it-
eration the average number count(a,l) of permutations (for all subpopulations)
in which there is an element a in a position [is computed. This model is called
cooperative.
Multiple-thread model. In this model processes execute independent algo-
rithms (working on different subpopulations) with different parameters of fixing
elements in positions. At the end, the best solution of each subpopulation is
collected and the best solution of the whole algorithm is chosen. We will call
this model independent.

The general structure of the parallel population training metaheuristic using
MPI library is given below.

Algorithm 1. Parallel Population Training Metaheuristics
procedure ParPTM(int n, int benchm_opt, bool stops, bool communication)
n - number of jobs to schedule;
benchm_opt - value of the benchmark’s near optimal solution, taken from [2];
stops - if it is true, the algorithm stops after achieving benchm_opt;
communication - if it is true the algortihm has got a common count table;
parfor p — 1..nrtasks do
best_cost,, « oo;
ay, — 0.7,
fized, — 0;
int count, [IN.MAX]N_MAX];
int p[N_MAX]; for i < 1. N_MAX do ¢,[i] < 0; end for;
perm PP[K_MAX];
for iter — 1..R do
fort — 0.K—1do
P?[t] « Random_Perm();
int f < Descent_Search(PP]t]);
if f < best_cost, then best_cost, « f; end if;
int fmin;
if stops == true then
MPI_Allreduce(& f, & fmin, 1, MPIINT, MPI_MIN,
MPI_COMM_WORLD);
if foin <= benchm_opt then return f,in;
end if;

for i,j «— 1..n do
count,|i][j] < O;
end for;
fort — 1. K—1do
for i — 1..fized, do
count,[i][PP[i]] + +;
end for;
end for;
if communication == true then
int new_count[N_-MAX]|[N_MAX];
MPI_Allreduce(count,, new_count, (n + 1) * (n + 1),
MPIINT, MPI.SUM, MPI.COMM_WORLD);
for i,pos «— 1..n do
count,[i][pos| < new_count[i][pos]/nrtasks;
end for;
end if;
\\ change « if it is too big or too small, i.e. no elements is fixed or too
\\ many are fixed
AutoTune(&pe);
for pos,i — 1..n do
if count,|i][pos]/K > pe then
fized++;
Pplil++;
end if;
end for;
for i — 1..n do
if p[i] > MAX_AGE then
Ppli] < 0;
fized — —;
end if}
end for;
end for; \ \¢
end for; \ \ iter
return f;
end parfor;

Local optimization (LocalOpt procedure.) A fast method based on the local
improvement is applied to determine the local minima. The method begins with
an initial solution 7°. In each iteration for the current solution 7 the neighbor-
hood N (%) is determined. Next, from the neighborhood the best element ¢ +!,
which is the current solution in the next iteration, is chosen.

In the implementation of the LocalOpt procedure a very quick descent search
algorithm is applied. The neighborhood is generated by insert moves.
A set of fixed elements and position (FizSet procedure). The set F'S°
(in iteration 4) includes quadruples (a,l, o,), where a is an element of the set
N =1{1,2,...,n}, l is a position in the permutation (1 <1 < n) and a, ¢ are

7

attributes of a pair (a,l). A parameter o means ”adaptation” and decides on
inserting to the set, and ¢ — ” age” — decides on deleting from the set. Parameter
@ enables to set free a fixed element after making a number of iterations of the
algorithm. However, a parameter o determines such a fraction of local minima
in which an element a is in position I.
Both of these parameters are described in a further part of this chapter. The
maximal number of elements in the set F'S? is n. If the quadruple (a,l, a,)
belongs to the set F'S? then there is an element a in the position ! in each
permutation from the population P?.

In each iteration of the algorithm, after determining local minima (LocalOpt
procedure), a new set F'S1 = FS? is established. Next, a FizSet(LM?, FS?)
procedure is invoked in which the following operations are executed:

(1) modifying the age of each element,
(2) erasing the oldest elements,
(3) fixing the new elements.

There are two functions of acceptance @ and I" connected with the operations
of inserting and deleting. Function @ is determined by an auto-tune function.
Function I is fixed experimentally as a constant.

Fixing elements. Let P’ = {m,m,..., Tk} be a population of K elements in
the iteration i. For each permutation 7; € P*, applying the local search algorithm
(LocalOpt () procedure), a set of local minima LM® = {#1, &g, ..., 7k} is de-
termined. For any permutation 7; = (7;(1),7;(2), ... ,7;(n)), j=1,2, .. K,
let be count(a,l) = |{#; € LM*: #;(l) = a}|. It is a number of permutations
from the set LM" in which the element a is in the position [.

If a € N is a free element (i.e. a € LM?) and

count(a,l)
a=——"""2> (1),
el >)
then the element a is fixed in the position [; we assume ¢ = 1 and the quadruple
(a,l,a,) is inserted to the set of fixed elements and positions, that is

FS™ — S U {(a,l,a,9)}.

Auto-tune of the acceptance level @. Function @ is defined so that for each
iteration ¢ 0 < &(i) < 1. It is possible that no element is acceptable to be
fixed in an iteration. To prevent from this an auto-tune procedure for @ value is
proposed. In each iteration i, if

count(a,l)

a,le{nll.%?.(..,n} K < (Z)

therefore, @(i) value is fixed as

t(a,l
&(i) «— max count(a,l) _ €,

where € is a small constant, e.g. ¢ = 0.05. In this way the value of &(i) is
decreased. Similarly, it is possible to increase this value when it is too small
(and too many elements are fixed in one iteration).

Deleting elements. Each fixed element is released after executing some number
of iterations to make possible testing a plenty of local minima. In this imple-
mentation function I'(¢) is defined as a constant equals 2, so each element of the
set FS? is deleted after executing 2 iterations.

Procedure NewPopul. Let a quadruple (a, [, o,) € FS**L. Therefore, in each
permutation of a new population P! there exists an element @ in a position .
Randomly drawn free elements will be inserted in remaining (free) positions.

5 Computational experiments

Parallel population training metaheuristics was implemented in C++ language
with the MPI library and it was tested on the Silicon Graphics SGI Altix
3700 Bx2 with 128 Intel Itanium2 1.5 GHz processors and cache-coherent Non-
Uniform Memory Access (cc-NUMA), craylinks NUMAflex4 in fat tree topology
with the bandwidth 4.3 Gbps, installed in the Wroclaw Center of Networking and
Supercomputing. Up to 16 processors of the supercomputer were used. Compu-
tational experiments were done to check the speed of convergence of the parallel
algorithm in two proposed models of communication and to compare the ob-
tained results with the benchmarks from literature [2] and the newest obtained
results for this single machine problem [3], [7], [6]).

In the Table 1 results of computational experiments for the scheduling prob-
lem 1|s;;| > w;T; are presented with the new upper bounds marked.

As we can see in Table 1 it was possible to find 81 new upper bounds of the
optimal cost function for the 120 benchmark instances. The average percentage
deviation to the solutions of Cicirello and Smith [2] was on the level of —13.12%
and was better than earlier proposed approaches for this problem (Cicirello and
Smith [2] and upper bounds from Cicirello [3], Lin and Ying [7] and Liao and
Juan [6], see Table 2).

Two criteria of the algorithm termination were checked. First one stops the
algorithm after achieving the benchmark value from [2] or exceeding R = 10
iterations. This criterion was helpful to determine the speedup of the parallel
algorithm tested for two models: the independent model and the model with
communication. The results of computations for this criterion of the algorithm
termination are presented in Table 3. The second criterion of the algorithm ter-
mination determines the speed of the parallel algorithm convergence. Algorithms
execute exactly R = 10 iterations. The results of computations for this criterion
are presented in Table 4.

For each version of the ParPTM algorithm (cooperative or independent, stops
afer achieving benchmark’s value or stops after executing a constant number of
iterations) the following metrics were calculated:

— PRD - Percentage Relative Deviation to the benchmark cost function value
from [2],

Table 1. Results of computational experiments for the problem 1|s;;| ZwiTi. The
new 81 upper bounds are marked by a bold font.

Nr FparPpTM PRD Nr FparPpTM PRD
1 618 -36,81% 61 76105 -4,73%
2 5061 -22,01% 62 44769 -6,46%
3 1769 -24,66% 63 75317 -4,45%
4 6389 -23,13% 64 92591 -3,93%
5 4662 -16,84% 65 126696 -6,07%
6 7207 -12,58% 66 59685 -6,82%
7 3647 -16,10% 67 29390 -15,79%
8 143 -56,27% 68 22120 -16,22%
9 6482 -14,69% 69 71118 -5,70%
10 1943 -20,73% 70 75102 -7,51%
11 3898 -25,94% 71 148230 -8,06%
12 0 0,00% 72 45543 -20,01%
13 4929 -19,81% 73 29045 -20,35%
14 2967 -24,71% 74 30503 -20,34%
15 1321 -54,68% 75 21602 -30,27%
16 4326 -35,54% 76 55378 -18,02%
17 127 -72,51% 77 33404 -17,64%
18 1337 -46,82% 78 20294 -19,16%
19 0 -100,00% 79 117596 -6,54%
20 2983 -28,86% 80 18620 -41,53%
21 0 0,00% 81 384383 -0,71%
22 0 0,00% 82 410257 -0,78%
23 0 0,00% 83 458844 -1,55%
24 1051 -41,32% 84 330022 -0,49%
25 0 0,00% 85 555065 -0,63%
26 0 0,00% 86 362677 -0,85%
27 0 -100,00% 87 398551 -1,11%
28 0 -100,00% 88 433244 -0,83%
29 0 0,00% 89 410739 -1,48%
30 0 -100,00% 90 402078 -1,19%
31 0 0,00% 91 342096 -1,46%
32 0 0,00% 92 361921 -1,05%
33 0 0,00% 93 407915 -0,62%
34 0 0,00% 94 333588 -0,81%
35 0 0,00% 95 521836 -1,15%
36 0 0,00% 96 462757 -0,35%
37 436 -81,89% 97 413089 -1,71%
38 0 0,00% 98 527603 -0,92%
39 0 0,00% 99 368353 -1,72%
40 0 0,00% 100 436004 -1,33%
41 69252 -5,36% 101 353018 -0,79%
42 58111 -6,06% 102 493072 -0,62%
43 146510 -2,32% 103 378864 -0,34%
44 35462 -8,43% 104 358033 -1,10%
45 59085 -5,86% 105 350806 -23,13%
46 35080 -7,66% 106 454769 -1,12%
47 73412 -4,89% 107 352766 -1,09%
48 65011 -5,67% 108 461828 -1,34%
49 78005 -7,29% 109 413004 -0,68%
50 31764 -12,34% 110 419437 -0,44%
51 50459 -13,85% 111 344532 -1,77%
52 97052 -7,89% 112 372287 -1,36%
53 88952 -6,81% 113 260093 -1,18%
54 124229 0,54% 114 469611 -0,76%
55 67969 -11,00% 115 463002 0,60%
56 77051 -12,86% 116 535967 -0,79%
57 67339 -4,37% 117 505416 -2,54%
58 47184 -15,02% 118 354576 -0,84%
59 53409 -9,57% 119 577318 -1,14%
60 65111 -11,21% 120 398723 -0,24%

Average -13,12

— APRD - Average Percentage Relative Deviation, for groups of instances,

— trotal(in seconds) — real time of executing the algorithm for 120 benchmark
instances from [2],

— tepu(in seconds) — the sum of time’s consuming on all processors.

Table 2. Average improvement rates (%) of the SA; GA and TS approaches from Lin
and Ying [7] compared to the proposed ParPTM approach. Standard deviation of the
ParPTM results o7 #M is determined over 10 runs.

Problem set SA GA TS ParPTM oTarPTM
1 to 10 20.00 22.83 19.12 24.38 5.19
11 to 20 20.89 27.60 18.46 40.89 25.92
21 to 30 30.39 30.93 29.18 34.13 34.08
31 to 40 6.86 6.42 5.81 8.19 3.63
41 to 50 5.21 5.65 5.33 6.59 2.57
51 to 60 5.29 5.65 4.44 9.20 6.64
61 to 70 7.25 6.56 7.25 7.77 4.68
71 to 80 15.39 15.02 16.32 20.19 7.42
81 to 90 0.66 0.56 0.56 0.96 0.34
91 to 100 -0.47 -0.50 -0.11 1.11 1.31
101 to 110 0.60 0.24 0.64 3.06 0.53
111 to 120 -0.23 -0.44 -0.23 1.00 1.28
average 9.32 9.97 8.90 13.12 7.80

As we can see in Table 3 the cooperative model of the ParPTM has shorter
real times of execution (tsotq;) than the independent model. Also the time con-
sumed by all the processors (tcp,) is shorter for the cooperative model of commu-
nication. It means that the cooperative model obtains faster the same solutions
as the independent model does.

Table 4 presents ARPD values obtained after execution of R = 10 iterations.
The average value is better for the cooperative model of communication.

6 Conclusion

We have discussed a new approach to the permutation optimization problems
based on the parallel population training metaheuristic algorithm. The usage of
the population with fixed features of local optima makes the performance of the
method much better than the iterative improvement approaches, such as in tabu
search, simulated annealing as well as classical genetic algorithms.

References

1. Bozejko W. and M. Wodecki, Evolutionary Heuristics for Hard Permutational Opti-
mization Problems, Internationam Journal of Computational Intelligence Research,
Vol. 2, Issue 2, Research India Publications (2006), 151-158.

Table 3. Total time of the ParPTM, the algorithm stops when the benchmark is
achieved. Times per 120 instances.

Processors cooperative independent

APRD ttotal (S) tcpu(S) APRD ttotal (S) tcpu(S)
1 1.48% 5658 5655 1.48% 5647 5645
2 0.65% 5383 10765 0.60% 5643 11287
4 -0.26% 5580 22323 -0.17% 17836 53516
6 -0.74% 5400 32283 -0.73% 8548 52516
8 -0.32% 5218 41753 -0.97% 12129 83196
12 -1.13% 5065 60722 -1.25% 5980 67995
16 -1.78% 6865 105670 -0.80% 20124 238615
average -0.23% 5595.6 39881.6 -0.26% 10843.9 73252.9

Table 4. Convergence of the ParPTM, constant number of iterations R=10. Times
per 120 instances.

Processors cooperative independent
APRD ttoml(s) tcpu(S) APRD ttoml(s) tcpu(S)
1 -0.73% 9462 9459 -0.70% 8113 8113
2 -2.09% 9669 19334 -1.76% 8310 16621
4 -3.48% 10124 40166 -2.94% 11535 39998
6 -4.20% 11963 67905 -4.13% 16916 84066
8 -4.47% 10479 83108 -4.53% 12058 88930
12 -5.00% 10311 123602 -5.01% 8770 105131
16 -5.47% 10329 165150 -5.29% 8732 139760
average -3.63% 10333.9 72674.9 -3.48% 10633.4 68945.6
2. Cicirello V.A. and S.F. Smith, Enhancing stochastic search performance by value-

based randomization of heuristics. Journal of Heuristics 11 (2005), 5-34.

Cicirello V.A., Non-Wrapping Order Crossover: An Order Preserving Crossover
Operator that Respect Absolute Position, 8th Annual Genetic and Evolutionary
Computation Conference GECCO 2006, ACM Press (2006), 1125-1131.

Gagné C., W.L. Price and M. Gravel, Comparing an ACO algorithm with other
heuristics for the single machine scheduling problem with sequence-dependent
setup times. Journal of the Operational Research Society 53 (2002), 895-906.

Lee Y.H., K. Bhaskaran and M. Pinedo, A heuristic to minimize the total weighted
tardiness with sequence-dependent setups, IIE Transactions 29 (1997), 45-52.
Liao C.-J.and H. C. Juan, An ant opimization for single-machine tardiness shcedul-
ing with sequence-dependent setups, Computers & Operations Research 34 (2007),
1899-1909.

Lin S.-W. and K.-C. Ying, Solving single-machine total weighted tardiness prob-
lems with sequence-dependent setup times by meta-heuristics, International Jour-
nal of Advanced Manufacturing Technology (on line), DOI 10.1007/300170-006-
0693-1 (2006).

Tan K.C., R. Narasimban, P.A. Rubin and G.L. Ragatz, A comparison on four
methods for minimizing total tardiness on a single procesor with sequence depen-
dent setup times, Omega 28 (2000), 313-326.

