Parallel genetic algorithm for the flow shop
scheduling problem

Wojciech Bozejko!' and Mieczystaw Wodecki?

! Tnstitute of Engineering, Wroclaw University of Technology
Janiszewskiego 11-17, 50-372 Wroclaw, Poland
email: wbo@ict.pwr.wroc.pl
2 Institute of Computer Science, University of Wroctaw
Przesmyckiego 20, 51-151 Wroclaw, Poland
email: mwd@ii.uni.wroc.pl

Abstract. The permutation flow shop sequencing problem with the ob-
jective of minimizing the sum of the job’s completion times, in literature
known as the F||Csum, has been considered. The parallel genetic algo-
rithm based on the island model of migration has been presented. By
computer simulations on Taillard benchmarks [10] and the best known
results from literature [9] we have obtained not only acceleration of the
computation’s time but also better quality and stability of the results.®

1 Introduction

We take under consideration the permutation flow shop scheduling problem de-
scribed as follows. A number of jobs are to be processed on a number of machines.
Each job must go through all the machines in exactly the same order and the
job order is the same on every machine. Each machine can process at most one
job at any point of time and each job may be processed on at most one machine
at any time. The objective is to find a schedule that minimizes the sum of the
job’s completion times. The problem is indicated by the F||Cgsym,-

There are plenty of good heuristic algorithms for solving the F||Cypqa. flow
shop problem, with the objective of minimizing the maximal job’s completion
times. For the sake of special properties (blocks of critical path, [5]) it is rec-
ognized as an easier one than the problem with the objective Cgyy,- Unfortu-
nately, there are no similar properties (which can speedup computations) for the
F||Csum flow shop problem. Constructive algorithms (LIT and SPD from [11])
have low efficiency and can only be applied in a limited range. There is a hybrid
algorithm in [9], consisting of elements of tabu search, simulated annealing and
path relinking methods. The results of this algorithm, applied to the Taillard
benchmark tests [10], are the best known ones in literature nowadays. The big
disadvantage of the algorithm is its time-consumption. Parallel computing is the
way to speed it up.

3 The work was supported by KBN Poland, within the grant No. T11A01624

This work is the continuation of the author’s research on constructing efficient
parallel algorithms to solve hard combinatorial problems ([1,2,12]). Further, we
present a parallel algorithm based on the genetic algorithm method which not
only speeds up the computations but also improves the quality of the results.

2 Problem definition and notation

The flow shop problem can be defined as follows, using the notation of Nowicki,
Smutnicki [7] and Grabowki, Pempera [5]. There are a set of n jobs J={1,2,...,n}
and a set of m machines M={1,2,...,m}. Job j € J consists of a sequence of
m operations Oj1, Oja,...,0jn. Operation Oj;, corresponds to the processing of
job j on machine £ during an uninterrupted processing time p;;. We want to
find a schedule so that the sum of the job’s completion times is minimal.

Let m# =(n(1), w(1),...,m(n)) be a permutation of jobs {1,2,...,n} and let
IT be the set of all permutations. Each permutation w€ IT defines a processing
order of jobs on each machine. We wish to find a permutation 7* € II that

n
Coum (%) = milr% Csum(m), where Cyym (1) = Y~ Cj (), and C; j(m) is the time
TE =1

required to complete job ¢ on the machine j in the processing order given by the
permutation 7. Such a problem belongs to the strongly NP-hard class.

3 Genetic algorithm

The genetic algorithm is a search procedure, based on the process of natural
evolution, following the principles of natural selection, crossover and survival.
The method has been proposed and developed by Holland [6]. In the beginning,
a population of individuals (solutions of the problem, for example permutations)
is created. Each individual is evaluated according to the fitness function (in our
problem this is the Cgyp(7) value). Individuals with higher evaluations (more
fitted, with a smaller Cy,,,, (7) value) are selected to generate a new generation
of this population. So there are three essential steps of the genetic algorithm: (1)
selection — choosing some subset of individuals, so-called parents, (2) crossover
— combining parts from pairs of parents to generate new ones, (3) mutation —
transformation that creates a new individual by small changes applied to an
existing one taken from the population.

New individuals created by crossover or mutation replace all or a part of the
old population. The process of evaluating fitness and creating a new population
generation is repeated until a termination criterion is achieved.

Let Py be an initial population, & — number of iteration of the algorithm, P
— population. Let P’ be a set of parents — subset of the most fitted individuals
of the population P. By the mechanism of crossover, the algorithm generates
a set of offsprings P" from set P’. Next, some of the individuals from the set
P" are mutated. The algorithm stops after a fixed number of iterations. The
complexity of the algorithm depends on the number of iterations and the size of
the population.

4 Parallel genetic algorithm

There are three basic types of parallelization strategies which can be applied
to the genetic algorithm: global, diffusion model and island model (migration
model).

Algorithms based on the island model divide the population into a few sub-
populations. Each of them is assigned to a different processor which performs
a sequential genetic algorithm based on its own subpopulation. The crossover
involves only individuals within the same population. Occasionally, the proces-
sor exchanges individuals through a migration operator. The main determinants
of this model are: (1) size of the subpopulations, (2) topology of the connection
network, (3) number of individuals to be exchanged, (4) frequency of exchanging.

The island model is characterized by a significant reduction of the commu-
nication time, compared to previous models. Shared memory is not required, so
this model is more flexible too. Bubak and Sowa [3] developed an implementation
of the parallel genetic algorithm for the TSP problem using the island model.

Below, a parallel genetic algorithm is proposed. The algorithm is based on
the island model of parallelizm. Additionally, there is the MSXF (Multi — Step
Crossover Fusion) operator used to extend the process of researching for better
solutions of the problem. MSXF has been described by Reeves and Yamada [9].
Its idea is based on local search, starting from one of the parent solutions, to
find a new good solution where the other parent is used as a reference point.

The neighbourhood N(7) of the permutation (individual) 7 is defined as a
set of new permutations that can be reached from 7 by exactly one adjacent pair-
wise exchange operator which exchanges the positions of two adjacent jobs of a
problem’s solution connected with permutation #. The distance measure d(m,0)
is defined as a number of adjacent pairwise exchanges needed to transform per-
mutation 7 into permutation ¢. Such a measure is known as Kendall’s 7 measure.

Algorithm 1. Multi-Step Crossover Fusion (MSXF), [9]
Let 7y, my be parent solutions. Set = g = my;
repeat
For each member y; € N (), calculate d(y;, 72);
Sort y; € N(w) in ascending order of d(y;, 72);
repeat
Select y; from N (7) with a probability inversely
proportional to the index i; Calculate Cyym, (y:);
Accept y;with probability 1 if Csym(yi) < Csum(x), and with
probability Pr(y;) = ezp((Csum (z) — Csum(yi)) / T) otherwise
(T is temperature);
Change the index of y; from ¢ to n and the indices of
Yk, k =1i+1,...,n from k to k—1;
until y; is accepted;
x = Y33 if Csum () < Csum(q) then g < x;
until some termination condition is satisfied;
q is the offspring.

In our implementation, MSXF is an inter-subpopulations crossover operator
which constructs a new individual using the best individuals of different sub-
populations connected with different processors. The condition of termination
consisted in exceeding of 100 iterations by the MSXF function.

Algorithm 2. Parallel genetic algorithm
parfor j =1,2,...,p { p is number of processors }
1 < 0; P; < random subpopulation connected with processor j;
pj < number of individuals in j subpopulation;
repeat
Selection(P;, P;); Crossover(P}, Pj'); Mutation(F}');
if (k mod R = 0) then {every R iteration}
r = random(1, p); MSXF(P;(1), P-(1));
end if;
Pj« Plsi+i+ 1
if there is no improvement of the average Clyy, then {Partial restart}
r := random(1,p);
Remove o = 90 percentage of individuals in subpopulation F; ;
Replenish P; by random individuals;
end if;
if (k mod S = 0) then { Migration}
r := random(1,p);
Remove 3 = 20 percentage of individuals in subpopulation FPj;
Replenish P; by the best individuals from subpopulation P,
taken from processor r;
end if;
until Stop_Condition;
end parfor

The frequency of communication between processors (migration and MSXF
operator) is very important for the parallel algorithm performance. It must not
be too frequent (long time of communication between processors!). In this imple-
mentation the processor gets new individuals quite rarely, every R = 20 (MSXF
operator) or every .S = 35 (migration) iterations.

5 Computer simulations

The algorithm was implemented in the Ada95 language and run on 4-processors
Sun Enterprise 4x400 MHz under the Solaris 7 operating system. Tasks of the
Ada95 language were executed in parallel as system threads. Tests were based on
50 instances with 100,...,500 operations (n x m=20x5, 20x10, 20x20, 50x5,
50%10) due to Taillard [10], taken from the OR-Library [8]. The results were
compared to the best known, taken from [9]. Every instance of the test prob-
lems was executed six times, and the average result was used for comparing.
The standard deviation of results was computed too, as a measure of algorithm
stability.

Firstly, we made tests of the classical genetic operators efficiency (seek Gold-
berg [4]) for our flow shop problem on the sequential genetic algorithm. Next,
we chose the PMX, CX and SX crossover operator and the I mutation operator
(random adjacent pairwise exchange) for further research. After choosing the
operators, we implemented the parallel genetic algorithm. The chosen model of
parallel computing was the MIMD machine of processors without shared mem-
ory — with the time of communication between processors much longer then the
time of communication inside the process which is executing on one processor.
The implementation was based on the island model of the parallel genetic al-
gorithm with one central processor and slave processors. The central processor
mediated in communication and stored data of the best individuals. Slave pro-
cessors executed their own genetic algorithms based on subpopulations of the
main population. Co-operation was based on migration between ’islands’ and
execution of the MSXF operator with parents taken from the best individuals
of different subpopulations (processors).

We tested the efficiency of the parallel algorithm which was activated with
combination of three strategies: with the same or different start subpopulations,
as independent or cooperative search threads and with the same or different
genetic operators. The number of iterations was permanently set to 1000. Re-
sults of tests for different start subpopulations for every processor are shown
in Table 1. The results of the computations for the same start subpopulations
strategy were similar, but slightly worse.

Table 1. Different start subpopulations, various genetic operators

4 processors
n X m |1 processor independent cooperation
the same op.|different op.|the same op.|different op.

20x5 1,00% 0,81% 0,73% 0,66% 0,52%

20x10 1,10% 1,00% 0,97% 0,81% 0,79%

20x20 0,93% 0,75% 0,74% 0,65% 0,64%

50x5 2,96% 3,70% 3,44% 3,43% 3,10%

50x10 4,48% 4,97% 4,70% 4,79% 4,64%
average| 2,13% 2,25% 2,11% 2,07% 1,98%
std.dev.| 0,20% 0,15% 0,12% 0,16% 0,12%

As it turned out, the strategy of starting the computation from different
subpopulations on every processor with different crossover operators and co-
operation, was significantly better than others. The improvement of the dis-
tance to reference solutions was at the level of 7%, comparing to the sequential
algorithm, with the same number of iterations equal to 1000 for the sequen-
tial algorithm and 250 for the 4-processors parallel algorithm. The time of the
computing amount of a few seconds up to a few dozen seconds, depends on the
size of the problem instance. Moreover, the parallel algorithm has more stability
results — standard deviation of the results was on average equal to 0.12% for the
best parallel algorithm, compared to 0.20% for the sequential algorithm — so the

improvement of the standard deviation was at the level of 40% with relation to
the sequential algorithm.

6 Conclusions

We have discussed a new approach to the permutation flow shop scheduling based
on the parallel asynchronous genetic algorithm. The advantage is especially vis-
ible for large problems. As compared to the sequential algorithm, parallelization
increases the quality of solutions obtained. The idea of the best individual mi-
gration and the inter-subpopulation operator was used. Computer experiments
show, that the parallel algorithm is considerably more efficient with relation
to sequential algorithm. Results of tests (after a small number of iterations)
are insignificantly different from the best known. In future work, we wish to
add to the algorithm more elements of coevolutionary schemas, e.g. predators
(predator-prey model), food, etc., and use environments more suitable for dis-
tributed computing (PVM, MPI), which will cause further improvement of the
parallel algorithm efficiency.

References

1. Bozejko W., Wodecki M., Solving the flow shop problem by parallel tabu search,
IEEE Computer Society, PR01730 ISBN 0-7695-1730-7, (2002), 189-194.

2. Bozejko W., Wodecki M., Parallel algorithm for some single machine scheduling
problems, Automatics vol. 134, (2002), 81-90.

3. Bubak M., Sowa M., Objectoriented implementation of parallel genetic algorithms,
in High Performance Cluster Computing: Programming and Applications (R.
Buyya, ed.), vol. 2, Prentice Hall, (1999), 331-349.

4. Goldberg D.; Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley Publishing Company, Inc., Massachusetts, 1989.

5. Grabowski J., Pempera J., New block properties for the permutation flow-shop
problem with application in TS, Jour. of Oper. Res. Soc. 52, (2001), 210-220.

6. Holland J.H., Adaptation in natural and artificial systems: An introductory an-
alysis with applications to biology, control, and artificial intelligence, University of
Michigan Press, 1975.

7. Nowicki E., Smutnicki C., A fast tabu search algorithm for the permutation flow
shop problem, EJOR 91 (1996), 160-175.

8. OR-Library: http://mscmga.ms.ic.ac.uk/info.html

9. Reeves C. R., Yamada T., Solving the Csum Permutation Flowshop Scheduling
Problem by Genetic Local Search, IEEE International Conference on Evolutionary
Computation, (1998), 230-234.

10. Taillard E., Benchmarks for basic scheduling problems, EJOR 64, (1993), 278-285.

11. Wang C., Chu C., Proth J., Heuristic approaches for n/m/F /X C; scheduling prob-
lems, EJOR (1997), 636-644.

12. Wodecki M., Bozejko W., Solving the flow shop problem by parallel simulated
annealing, LNCS No. 2328, Springer Verlag, (2002), 236-247.

