Pochodne typy danych |
MPI_TYPE_CONTIGUOUS (count,oldtype,newtype,ierr)
MPI_TYPE_INDEXED (count,blocklens(),offsets(),old_type,newtype,ierr)
MPI_TYPE_EXTENT (datatype,extent,ierr)
MPI_TYPE_COMMIT (datatype,ierr)
Przykład: Pochodne typy danych (MPI_Type_Contiguous).
Tworzy typ reprezentowany przez wiersz macierzy a następnie rozsyła do wszystkich procesów. Diagram tutaj.
Język C |
#include "mpi.h" #include <stdio.h> #define SIZE 4 main(int argc, char *argv[]) { int numtasks, rank, source=0, dest, tag=1, i; float a[SIZE][SIZE] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0}; float b[SIZE]; MPI_Status stat; MPI_Datatype rowtype; MPI_Init(&argc,&argv); MPI_Comm_rank(MPI_COMM_WORLD, &rank); MPI_Comm_size(MPI_COMM_WORLD, &numtasks); MPI_Type_contiguous(SIZE, MPI_FLOAT, &rowtype); MPI_Type_commit(&rowtype); if (numtasks == SIZE) { if (rank == 0) { for (i=0; i<numtasks; i++) MPI_Send(&a[i][0], 1, rowtype, i, tag, MPI_COMM_WORLD); } MPI_Recv(b, SIZE, MPI_FLOAT, source, tag, MPI_COMM_WORLD, &stat); printf("rank= %d b= %3.1f %3.1f %3.1f %3.1f\n", rank,b[0],b[1],b[2],b[3]); } else printf("Must specify %d processors. Terminating.\n",SIZE); MPI_Finalize(); } |
Przykład działania programu:
rank= 0 b= 1.0 2.0 3.0 4.0 rank= 1 b= 5.0 6.0 7.0 8.0 rank= 2 b= 9.0 10.0 11.0 12.0 rank= 3 b= 13.0 14.0 15.0 16.0
Przykład: Pochodne typy danych (MPI_Type_vector).
Tworzy nowy typ reprezentowany przez kolumnę macierzy a następnie rozsyła do wszystkich procesów. Diagram tutaj.
Język C |
#include "mpi.h" #include <stdio.h> #define SIZE 4 main(int argc, char *argv[]) { int numtasks, rank, source=0, dest, tag=1, i; float a[SIZE][SIZE] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0}; float b[SIZE]; MPI_Status stat; MPI_Datatype columntype; MPI_Init(&argc,&argv); MPI_Comm_rank(MPI_COMM_WORLD, &rank); MPI_Comm_size(MPI_COMM_WORLD, &numtasks); MPI_Type_vector(SIZE, 1, SIZE, MPI_FLOAT, &columntype); MPI_Type_commit(&columntype); if (numtasks == SIZE) { if (rank == 0) { for (i=0; i<numtasks; i++) MPI_Send(&a[0][i], 1, columntype, i, tag, MPI_COMM_WORLD); } MPI_Recv(b, SIZE, MPI_FLOAT, source, tag, MPI_COMM_WORLD, &stat); printf("rank= %d b= %3.1f %3.1f %3.1f %3.1f\n", rank,b[0],b[1],b[2],b[3]); } else printf("Must specify %d processors. Terminating.\n",SIZE); MPI_Finalize(); } |
rank= 0 b= 1.0 5.0 9.0 13.0 rank= 1 b= 2.0 6.0 10.0 14.0 rank= 2 b= 3.0 7.0 11.0 15.0 rank= 3 b= 4.0 8.0 12.0 16.0
Przykład: Pochodne typy danych (MPI_Type_indexed).
Tworzy typ przez scalenie kilku kawałków wektora a następnie rozsyła do wszystkich procesów. Diagram tutaj.
Język C |
#include "mpi.h" #include <stdio.h> #define NELEMENTS 6 main(int argc, char *argv[]) { int numtasks, rank, source=0, dest, tag=1, i; int blocklengths[2], displacements[2]; float a[16] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0}; float b[NELEMENTS]; MPI_Status stat; MPI_Datatype indextype; MPI_Init(&argc,&argv); MPI_Comm_rank(MPI_COMM_WORLD, &rank); MPI_Comm_size(MPI_COMM_WORLD, &numtasks); blocklengths[0] = 4; blocklengths[1] = 2; displacements[0] = 5; displacements[1] = 12; MPI_Type_indexed(2, blocklengths, displacements, MPI_FLOAT, &indextype); MPI_Type_commit(&indextype); if (rank == 0) { for (i=0; i<numtasks; i++) MPI_Send(a, 1, indextype, i, tag, MPI_COMM_WORLD); } MPI_Recv(b, NELEMENTS, MPI_FLOAT, source, tag, MPI_COMM_WORLD, &stat); printf("rank= %d b= %3.1f %3.1f %3.1f %3.1f %3.1f %3.1f\n", rank,b[0],b[1],b[2],b[3],b[4],b[5]); MPI_Finalize(); } |
Przykład działania programu:
rank= 0 b= 6.0 7.0 8.0 9.0 13.0 14.0 rank= 1 b= 6.0 7.0 8.0 9.0 13.0 14.0 rank= 2 b= 6.0 7.0 8.0 9.0 13.0 14.0 rank= 3 b= 6.0 7.0 8.0 9.0 13.0 14.0
Przykład: Pochodne typy danych (MPI_Type_struct).
Tworzy typ strukturalny a następnie rozsyła do wszystkich procesów. Diagram tutaj.
Język C |
#include "mpi.h" #include <stdio.h> #define NELEM 25 main(int argc, char *argv[]) { int numtasks, rank, source=0, dest, tag=1, i; typedef struct { float x, y, z; float velocity; int n, type; } Particle; Particle p[NELEM], particles[NELEM]; MPI_Datatype particletype, oldtypes[2]; int blockcounts[2]; /* MPI_Aint type used to be consistent with syntax of */ /* MPI_Type_extent routine */ MPI_Aint offsets[2], extent; MPI_Status stat; MPI_Init(&argc,&argv); MPI_Comm_rank(MPI_COMM_WORLD, &rank); MPI_Comm_size(MPI_COMM_WORLD, &numtasks); /* Setup description of the 4 MPI_FLOAT fields x, y, z, velocity */ offsets[0] = 0; oldtypes[0] = MPI_FLOAT; blockcounts[0] = 4; /* Setup description of the 2 MPI_INT fields n, type */ /* Need to first figure offset by getting size of MPI_FLOAT */ MPI_Type_extent(MPI_FLOAT, &extent); offsets[1] = 4 * extent; oldtypes[1] = MPI_INT; blockcounts[1] = 2; /* Now define structured type and commit it */ MPI_Type_struct(2, blockcounts, offsets, oldtypes, &particletype); MPI_Type_commit(&particletype); /* Initialize the particle array and then send it to each task */ if (rank == 0) { for (i=0; i<NELEM; i++) { particles[i].x = i * 1.0; particles[i].y = i * -1.0; particles[i].z = i * 1.0; particles[i].velocity = 0.25; particles[i].n = i; particles[i].type = i % 2; } for (i=0; i<numtasks; i++) MPI_Send(particles, NELEM, particletype, i, tag, MPI_COMM_WORLD); } MPI_Recv(p, NELEM, particletype, source, tag, MPI_COMM_WORLD, &stat); /* Print a sample of what was received */ printf("rank= %d %3.2f %3.2f %3.2f %3.2f %d %d\n", rank,p[3].x, p[3].y,p[3].z,p[3].velocity,p[3].n,p[3].type); MPI_Finalize(); } |
Przykład działania programu:
rank= 0 3.00 -3.00 3.00 0.25 3 1 rank= 2 3.00 -3.00 3.00 0.25 3 1 rank= 1 3.00 -3.00 3.00 0.25 3 1 rank= 3 3.00 -3.00 3.00 0.25 3 1