
Time varying parameters
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Let us first consider, for simplicity of presentation, the problem of estimation of constant value θ∗, observed
in the presence of additive, zero-mean random noise zk with finite variance σ2

z

yk = θ∗ + zk,

i.e., we recover θ∗ from the observations {yk}Nk=1. In general, the measurements {yk}Nk=1 can be taken into
account with different levels of significancy, i.e., we want to find the weighted least squares minimum

θ̂ = arg min
θ

N∑
k=1

αk (yk − θ)2 , (1)

where αk’s are some weights representing the priorities of respective measurements yk’s. Since

∂

∂θ

N∑
k=1

αk (yk − θ)2 = 2

N∑
k=1

(θαk − ykαk) ,

the minimum in (1) is the solution of the equation

θ

N∑
k=1

αk =

N∑
k=1

ykαk

which leads to

θ̂ =

∑N
k=1 ykαk∑N
k=1 αk

, (2)

where
∑N

k=1 αk can be understand as effective number of measurements. In particular, if αk’s are the same
for each k, i.e. αk = α = const, then we obtain the standard least squares solution

θ̂ =
α
∑N

k=1 yk
Nα

=
1

N

N∑
k=1

yk.
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Non-uniform αk’s are commonly applied due to two main reasons: (i) time-varying estimated value θ
∗(N) =

θ∗N , and (ii) error-in variable problem in local regression estimation.

(i) If the estimated value θ∗N is changing, the popular choice is to take

αk = λN−k, with 0 < λ < 1 (3)

which damps old measurements and increase the influence of recent observations on the resulting estimate.
Moreover, such a choice is very convenient for designing the recursive versions of identification algorithms,
since

αk+1 =
1

λ
αk.

On the other hand, since the effective number of measurements is finite, i.e.
∑∞

k=1 αk =
∑∞

k=1 λ
N−k <∞,

the variance of the estimate (2) does not tend to zero. It is a cost paid for good tracking abilities of
the algorithm. The most popular models of θ∗N variations are random walk, random walk with trends,
jump changes, Markov chains and knwoledge-based descriptions (for details see [?] and the references cited
therein).

Also the restrictive (hard) selection of the fixed number n of the last measurements can be applied, i.e.,

αk =

{
1, as N − n < k ≤ N

0, as k ≤ N − n .

The estimate θ̂
(N)

n , selecting n last observations from the N element data set, is then as follows

θ̂
(N)

n =
1

n

N∑
k=N−n+1

yk

Let us assume that the true value of estimated parameter jumps, at the time instant N , from θ∗ to θ∗+ ∆,
and the moments of the measurement noise zk remain the same. Let us also introduce the following quality
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index of the tracking procedure

Q(n) =

N+H∑
i=N+1

(
var θ̂

(i)

n + bias2 θ̂
(i)

n

)
,

where H denotes horizon of the tracking. We simply get

Q(n) =
Hσ2

z

n
+

∆2

n2

n−1∑
j=1

j2 =
Hσ2

z

n
+

∆2

n2

(
n(n + 1)(2n + 1)

6
− n2

)
' Hσ2

z

n
+

∆2

3
n,

where the cummulated variance component Hσ2
z

n dominates for small n, while the cummulated bias error
∆2

3 n inreases for large n (see Fig. 1). The optimal value of n
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Figure 1: Sample behaviour of bias and variance after parameter jump for n = 10 and n = 50.

nopt. = arg min
n
Q(n)

obviously depends on the relation between horizon H, height of jump ∆, and the variance of the noise
σ2
z, i.e. nopt. = nopt.(H,∆, σ

2
z). Nevertheless, this dependence is weak, in the sense that in typical cases (∆
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comparable with σ2
z) nopt usually lays between 10 and 20 (see Example in Fig. 2). Let us also emphasize

that since ∆ and σ2
z are unknown, computing nopt. is not possible. Also the asymptotic convergence of the

estimate cannot be achieved, because of finite number of effective measurements.
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Figure 2: Dependence between tracking error Q and the window length n, for H = 100, σz = 20, and ∆ = 30.
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