Time varying parameters



Let us first consider, for simplicity of presentation, the problem of estimation of constant value 8, observed

2

in the presence of additive, zero-mean random noise z; with finite variance o

yr = 60" + zp,

i.e., we recover 0" from the observations {y;}i_,. In general, the measurements {y; }»_, can be taken into
account with different levels of significancy, i.e., we want to find the weighted least squares minimum
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where «.’s are some weights representing the priorities of respective measurements ;’s. Since
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the minimum in (1) is the solution of the equation
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which leads to
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where >, , a; can be understand as effective number of measurements. In particular, if ay,’s are the same
for each k, i.e. o, = o = const, then we obtain the standard least squares solution




Non-uniform a4,’s are commonly applied due to two main reasons: (i) time-varying estimated value 6" (V) =
'y, and (ii) error-in variable problem in local regression estimation.

(i) If the estimated value 0 is changing, the popular choice is to take
o =NV with0 < A < 1 (3)

which damps old measurements and increase the influence of recent observations on the resulting estimate.
Moreover, such a choice is very convenient for designing the recursive versions of identification algorithms,

since
1

Apy+1 = XOék;-
On the other hand, since the effective number of measurements is finite, i.e. S27°, ap = > o0, AV 7% < o0,
the variance of the estimate (2) does not tend to zero. It is a cost paid for good tracking abilities of
the algorithm. The most popular models of 07 variations are random walk, random walk with trends,
jump changes, Markov chains and knwoledge-based descriptions (for details see [?] and the references cited

therein).

Also the restrictive (hard) selection of the fixed number n of the last measurements can be applied, i.e.,

N l,asN—n< k<N
B O,as k< N-—-n
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The estimate 87(1 ), selecting n last observations from the N element data set, is then as follows
N1 ¢
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Let us assume that the true value of estimated parameter jumps, at the time instant N, from 6 to 6* + A,
and the moments of the measurement noise z; remain the same. Let us also introduce the following quality

Q



index of the tracking procedure
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where H denotes horizon of the tracking. We simply get
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17: dominates for small n, while the cummulated bias error

where the cummulated variance component —

%Qn inreases for large n (see Fig. 1). The optimal value of n
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Figure 1: Sample behaviour of bias and variance after parameter jump for n = 10 and n = 50.

g, = arg min Q(n)

obviously depends on the relation between horizon H, height of jump A, and the variance of the noise

02, 1.e. nopr. = Nyt (H, A, 02). Nevertheless, this dependence is weak, in the sense that in typical cases (A

A



comparable with ¢2) n,,; usually lays between 10 and 20 (see Example in Fig. 2). Let us also emphasize
that since A and o2 are unknown, computing n,,;. is not possible. Also the asymptotic convergence of the
estimate cannot be achieved, because of finite number of effective measurements.
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Figure 2: Dependence between tracking error ) and the window length n, for H = 100, o, = 20, and A = 30.



