
1

Semi-Parametric Identification of Time-Varying

Block-Oriented Systems

Grzegorz Mzyk

Abstract

In the paper, we identify nonlinear block-oriented dynamic systems with time-varying characteris-

tics. Nonparametric kernel regression estimate for nonstationary regression estimation is introduced and

applied to identification of Hammerstein and Narmax systems. For the systems with periodical changes

of parameters the consistent estimate is proposed. Also the issue of the best parametric model selection

of time-varying systems is discussed.
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I. INTRODUCTION

A large number of physical systems are nonstationary. Identification of nonstationary processes

have been widely studied in the literature for linear systems. Traditional techniques for identifying

linear time-varying (LTV) systems are based on the recursive weighted least squares methods

(see [17], [2], [9], [3]). The weights are dependent on time, in the sense that the most recent

measurements are privileged, while the oldest have the smallest influence on the estimate. If the

time horizon is too long, i.e. the weights decrease too slow, we obtain the bias connected with

parameter changes. On the other hand, if the horizon is short, the estimate becomes sensitive on

the noise and the variance error appears. The goal is thus to design a good compromise between
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bias and variance, i.e., we look for a good trade-off between tracking ability and noise rejection

[10], [15], [8], [16]. Some of methods proposed in the literature use the Kalman filter approach

[1], or expand changes of the coefficients in the wavelet series [21]. As regards the identification

of time-varying nonlinear block-oriented (Hammerstein and Wiener) systems, comparatively little

attention has been paid in the literature. It is commonly assumed that the nonlinear regression

is quasi-stationary, i.e., that the system becomes stationary as the measurement index tends to

infinity (see [6], [18], [19], [20]).

In this chapter we adopt some results of adaptive modeling theory of linear system for the

nonlinear dynamic systems. In Section II we formulate the problem of nonparametric kernel

regression estimation in nonstationary case. Next, in Section III we generalize the 3-stage algo-

rithm, presented in [14], for parameter-varying NARMAX systems. In Section IV we consider

a special case, when the system characteristics change periodically with the known time-period

T . Finally, in Section V we show the application of the model detection method, proposed in

[13], for time-varying systems.

II. KERNEL ESTIMATE FOR TIME-VARYING REGRESSION

Let us first consider, for simplicity of presentation, the problem of estimation of constant value

θ∗, observed in the presence of additive, zero-mean random noise zk with finite variance σ2
z

yk = θ∗ + zk,

i.e., we recover θ∗ from the observations {yk}Nk=1. In general, the measurements {yk}Nk=1 can be

taken into account with different levels of significancy, i.e., we want to find the weighted least

squares minimum

θ̂ = arg min
θ

N∑
k=1

αk (yk − θ)2
, (1)

where αk’s are some weights representing the priorities of respective measurements yk’s. Since

∂

∂θ

N∑
k=1

αk (yk − θ)2 = 2
N∑
k=1

(θαk − ykαk) ,

the minimum in (1) is the solution of the equation

θ

N∑
k=1

αk =

N∑
k=1

ykαk
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which leads to

θ̂ =

∑N
k=1 ykαk∑N
k=1 αk

, (2)

where
∑N

k=1 αk can be understand as effective number of measurements. In particular, if αk’s

are the same for each k, i.e. αk = α = const, then we obtain the standard least squares solution

θ̂ =
α
∑N

k=1 yk
Nα

=
1

N

N∑
k=1

yk.

Non-uniform αk’s are commonly applied due to two main reasons: (i) time-varying estimated

value θ∗(N) = θ∗N , and (ii) error-in variable problem in local regression estimation.

(i) If the estimated value θ∗N is changing, the popular choice is to take

αk = λN−k, with 0 < λ < 1 (3)

which damps old measurements and increase the influence of recent observations on the resulting

estimate. Moreover, such a choice is very convenient for designing the recursive versions of

identification algorithms, since

αk+1 =
1

λ
αk.

On the other hand, since the effective number of measurements is finite, i.e.
∑∞

k=1 αk =∑∞
k=1 λ

N−k < ∞, the variance of the estimate (2) does not tend to zero. It is a cost paid for

good tracking abilities of the algorithm. The most popular models of θ∗N variations are random

walk, random walk with trends, jump changes, Markov chains and knwoledge-based descriptions

(for details see [10] and the references cited therein).

Also the restrictive (hard) selection of the fixed number n of the last measurements can be

applied, i.e.,

αk =

 1, as N − n < k ≤ N

0, as k ≤ N − n
.

The estimate θ̂
(N)

n , selecting n last observations from the N element data set, is then as follows

θ̂
(N)

n =
1

n

N∑
k=N−n+1

yk

Let us assume that the true value of estimated parameter jumps, at the time instant N , from θ∗

to θ∗+∆, and the moments of the measurement noise zk remain the same. Let us also introduce
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the following quality index of the tracking procedure

Q(n) =

N+H∑
i=N+1

(
var θ̂

(i)

n + bias2 θ̂
(i)

n

)
,

where H denotes horizon of the tracking. We simply get

Q(n) =
Hσ2

z

n
+

∆2

n2

n−1∑
j=1

j2 =
Hσ2

z

n
+

∆2

n2

(
n(n+ 1)(2n+ 1)

6
− n2

)

' Hσ2
z

n
+

∆2

3
n,

where the cummulated variance component
Hσ2z
n

dominates for small n, while the cummulated

bias error ∆2

3
n inreases for large n (see Fig. 1). The optimal value of n
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Figure 1. Sample behaviour of bias and variance after parameter jump for n = 10 and n = 50.

nopt. = arg min
n
Q(n)

obviously depends on the relation between horizon H , height of jump ∆, and the variance of the

noise σ2
z, i.e. nopt. = nopt.(H,∆, σ

2
z). Nevertheless, this dependence is weak, in the sense that in

typical cases (∆ comparable with σ2
z) nopt usually lays between 10 and 20 (see Example in Fig.

2). Let us also emphasize that since ∆ and σ2
z are unknown, computing nopt. is not possible.

Also the asymptotic convergence of the estimate cannot be achieved, because of finite number

of effective measurements.

(ii) In the traditional kernel regression function estimation we recover the value of time-

invariant function θ∗ = µ(u) for a given point u, using the pairs of observations {(uk, yk)}Nk=1,

where uk’s are random (not necessary equal to u) and

yk = µ(uk) + zk.
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Figure 2. Dependence between tracking error Q and the window length n, for H = 100, σz = 20, and ∆ = 30.

Assuming that µ() is a Lipschitz function, the pairs (uk, yk) are taken into account with different

level of significancy, and the following minimization is perfored

µ̂(u) = arg min
θ

N∑
k=1

αk (yk − θ)2
, (4)

where αk’s are some weights representing the priorities of respective measurements (uk, yk)’s.

The weights αk’s are dependent on the distance between kth input observation uk, and the given

estimation point u. For example we can set

αk = K

(
uk − u
h

)
, (5)

where K() is a kernel function, and h – a bandwidth parameter.

For a non-stationary and nonlinear block θ∗N = µN(u), when the estimated value θ∗ changes

in time (N is the time instant in which we want to estimate θ∗), we propose to combine (3)

with (5) in the following way

αk = λN−kK

(
uk − u
h

)
.

It leads to the following, nonparametric tracking procedure

θ̂N = µ̂N(u) =

∑N
k=1 ykλ

N−kK
(
uk−u
h

)∑N
k=1 λ

N−kK
(
uk−u
h

) . (6)

The generalized kernel estimate (6) with the forgetting factor λ can be applied in the regression

estimation in Hammerstein systems (see [5]), inverse regression estimation in Wiener systems

(see [4]), and in the censored sample mean approach to Wiener-Hammerstein systems (see
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[11] and [12]). It can also support generation of instrumental variables for the IIR Hammer-

stein/NARMAX systems (see [14]), and compress the data in the 3-step procedure of model

recognition (see [7] and [13]).

Below, we present the results of simple experiment, in which the time-varying static character-

istic µN(u) = u2 + cN , with jumping offset cN = 1N−30 was recovered in the point u = 0, under

random input uk ∼ U [−1, 1] and in the presence of random output noise zk ∼ U [−0.1, 0.1].

As can be seen in Fig. 3, for small value of λ (λ = 0.6) we observe rapid reaction with huge
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Figure 3. Tracking results for various values of the forgetting factor λ.

variance of the results. For λ close to 1 the variance is reduced, but it is done at the expense of

inertia.

III. WEIGHTED LEAST SQUARES FOR NARMAX SYSTEMS

In this point we analyze applicability of the recursive weighted least squares and instrumental

variables algorithms and the modified kernel regression method (6) in the 3-Stage identification

of additive NARMAX system (see [14]) described as follows

yk =

p∑
j=1

λjη(yk−j) +
n∑
i=0

γiµ(uk−i) + zk (7)

where

µ(u) =

m∑
t=1

ctft(u) (8)

η(y) =

q∑
l=1

dlgl(y)
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and f1(u), ..., fm(u), g1(y), ..., gq(y) are linearly independent basis functions of known form.

Below, we present the stages of the procedure for identification of parameters ct and dl of

time-varying NARMAX systems.

Stage 1 (nonparametric). Generate empirical matrix of instruments Ψ̂∗N,M = (ψ̂
∗
1,M , ψ̂

∗
2,M , ...ψ̂

∗
N,M)T ,

where

ψ̂
∗
k,M = (f1(uk), ..., fm(uk), ..., f1(uk−n), ..., fm(uk−n), (9)

R̂1,M(uk−1), ......, R̂q,M(uk−1), ..., R̂1,M(uk−p), ..., R̂q,M(uk−p))
T ,

and R̂l,M(uj) =
∑j

i=1

(
gl(yi)λ

j−iK( u−ui
h(M)

)
)
/
∑j

i=1 λ
j−iK( u−ui

h(M)
), with 0 < λ < 1.

Stage 2 (parametric). Estimate the aggregated parameter vector

θ = (γ0c1, ..., γ0cm, ..., γnc1, ..., γncm, λ1d1, ..., λ1dq, ..., λpd1, ..., λpdq)
T (10)

= (θ1, ..., θ(n+1)m, θ(n+1)m+1, ..., θ(n+1)m+pq)
T

using the recursive least squares or instrumental variables method

θ̂
(LS)

k = θ̂
(LS)

k−1 + P
(LS)
k φk(yk − φTk θ̂

(LS)

k−1 ), (11)

θ̂
(IV )

k = θ̂
(IV )

k−1 + P
(IV )
k ψk(yk − φTk θ̂

(IV )

k−1 ),

with

P
(LS)
k = P

(LS)
k−1 −

1

1 + φTkP
(LS)
k−1 φk

P
(LS)
k−1 φkφ

T
kP

(LS)
k−1 , (12)

P
(IV )
k = P

(IV )
k−1 −

1

1 + φTkP
(IV )
k−1 ψk

P
(IV )
k−1 ψkφ

T
kP

(IV )
k−1 ,

or minimize the weighted criterion (see [10])

N∑
k=1

αk
(
yk − φTk θ

)2 → min
θ

,

in the following way

θ̂
(LS)

k = θ̂
(LS)

k−1 + L
(LS)
k (yk − φTk θ̂

(LS)

k−1 ), (13)

θ̂
(IV )

k = θ̂
(IV )

k−1 + L
(IV )
k (yk − φTk θ̂

(IV )

k−1 ),

where

L
(LS)
k =

P
(LS)
k−1 φk

αk + φTkP
(LS)
k−1 φk

, L
(IV )
k =

P
(IV )
k−1 φk

αk + φTkP
(IV )
k−1 φk

,
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and

P
(LS)
k =

1

αk

[
P

(LS)
k−1 −

P
(LS)
k−1 φkφ

T
kP

(LS)
k−1

αk + φTkP
(LS)
k−1 φk

]
,

P
(IV )
k =

1

αk

[
P

(IV )
k−1 −

P
(IV )
k−1 φkφ

T
kP

(IV )
k−1

αk + φTkP
(LS)
k−1 φk

]
.

Stage 3 (decomposition). Similarly as for time-invariant system compute the SVD (singular

value decomposition) of the matrices Θ̂
(IV )
λd and Θ̂

(IV )
γc , i.e., Θ̂

(IV )
γc =

∑min(n,m)
i=1 σiµ̂iν̂

T
i , Θ̂

(IV )
λd =∑min(p,q)

i=1 δiξ̂iζ̂
T

i to obtain the estimates of changing parameters.

IV. NONPARAMETRIC IDENTIFICATION OF PERIODICALLY VARYING SYSTEMS

Let us consider the continuous-time Hammerstein system with periodically varying nonlinear

static characteristic with a priori known period T . The goal is to estimate periodic regression

R(u, t) = R(u, t+ T )

for each t ∈ [0, T ], from the randomly sampled measurements {(tk, uk, yk)}, where tk is the

time instance of the collected pair (uk, yk).

R̂N(u, t) =

∑N
k=1 ykK

 1
hN

∥∥∥∥∥∥
 uk

t∗k

−
 u

t

∥∥∥∥∥∥


∑N
k=1K

 1
hN

∥∥∥∥∥∥
 uk

t∗k

−
 u

t

∥∥∥∥∥∥


where

t∗k = tk − nkT , and nk =

⌊
tk
T

⌋
.

Let f(u, t) be joint probability density function of the input u and the time t. The following

theorem holds.

Theorem 1: If hN → 0 and Nh2
N → ∞, as N → ∞, and moreover both R() and f() are

continuous in the point (u, t), then

R̂N(u, t)→ R(u, t)

provided that f(u, t) > 0.
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V. DETECTION OF STRUCTURE CHANGES

The modified kernel estimate for time-varying regression (see (6)) can be also applied in the

first step of the procedure of model selection, described in detail in [7] and [13]. The recognition

procedure is as follows (see Fig. 4).

Step 1. Nonparametric smoothing/denoising/data-compression

For the grid of N0 selected fixed points u1,u2, ..., uN0 , compute nonparametric estimates

R̂N(u1), R̂N(u2), ..., R̂N(uN0) of the regression function, playing the role of the true characteristic

µ().

Step 2. Least squares approximation

For each class l = 1, 2, ...,M minimize the loss function

Q̂l(θl) =
1

N0

N0∑
i=1

(
R̂N(ui)−R

(l)
(ui, θl)

)2

, (14)

being the empirical counterpart of the least squares criterion

Ql(θl) =
1

N0

N0∑
i=1

(
R(ui)−R

(l)
(ui, θl)

)2

,

with respect to θl, getting the estimate

θ̂
∗
l = arg min

θl
Q̂l(θl) (15)

of the best parameters θ∗l in the l-th class.

Step 3. Nearest neighbour model selection

Select the ’nearest neighbour’ model, i.e.{
R

(l0)
(
u, θ̂

∗
l0

)}
, (16)

where

l0 = arg min
l

[κl]∆l(θ̂
∗
l ). (17)

Obviously, when the true system characteristic changes in time, then, the index of optimal

approximating class is also function of time. The only needed modification is to replace the

standard kernel estimate in Step 1, with the weighted approach, given in (6). Steps 2 and 3

of the procedure remain unchanged. Such a strattegy seems to be an interesting proposition in

switched system control and fault detection.
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Figure 4. Scheme of the 3-step method of model selection
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