11.

Best Linear Unbiased Estimate

1. LS properties for $N<\infty$

bias

$$
\text { let } \begin{aligned}
L_{N} & =\left(X_{N}^{T} X_{N}\right)^{-1} X_{N}^{T} \text { we get } \mathbf{a}_{N}=L_{N} Y_{N} \text { (linear estimate) } \\
\mathbf{a}_{N} & =L_{N} Y_{N}=L_{N}\left(X_{N} \mathbf{a}^{*}+Z_{N}\right)=\mathbf{a}^{*}+L_{N} Z_{N} \\
\mathbf{E a}_{N} & =\mathbf{a}^{*}+\mathbf{E}\left\{L_{N}\right\} \mathbf{E}\left\{Z_{N}\right\}=\mathbf{a}^{*}
\end{aligned}
$$

conclusion: \mathbf{a}_{N} is unbiased for both random and deterministic input covariance matrix

$$
\begin{aligned}
\operatorname{cov}\left(\mathbf{a}_{N}\right) & =\mathbf{E}\left\{\left(\mathbf{a}_{N}-\mathbf{a}^{*}\right)\left(\mathbf{a}_{N}-\mathbf{a}^{*}\right)^{T}\right\} \\
\mathbf{a}_{N}-\mathbf{a}^{*} & =L_{N} Z_{N} \\
\operatorname{cov}\left(\mathbf{a}_{N}\right) & =\mathbf{E}\left\{L_{N} Z_{N} Z_{N}^{T} L_{N}^{T}\right\}=L_{N}\left(\mathbf{E} Z_{N} Z_{N}^{T}\right) L_{N}^{T}
\end{aligned}
$$

structure

$$
\mathbf{E} Z_{N} Z_{N}^{T}=\left[\begin{array}{llll}
\mathbf{E} z_{1}^{2} & \mathbf{E} z_{1} z_{2} & . . & \mathbf{E} z_{1} z_{N} \\
\mathbf{E} z_{2} z_{1} & \mathbf{E} z_{2}^{2} & . . & : \\
\vdots & : & : & : \\
\mathbf{E} z_{N} z_{1} & . . & . . & \mathbf{E} z_{N}^{2}
\end{array}\right]=\sigma_{z}^{2} I
$$

thus

$$
\operatorname{cov}\left(\mathbf{a}_{N}\right)=\sigma_{z}^{2} L_{N} L_{N}^{T}
$$

for $L_{N} L_{N}^{T}$ we get

$$
L_{N} L_{N}^{T}=\left(X_{N}^{T} X_{N}\right)^{-1} X_{N}^{T} X_{N}\left(X_{N}^{T} X_{N}\right)^{-1}=\left(X_{N}^{T} X_{N}\right)^{-1}
$$

hence

$$
\operatorname{cov}\left(\mathbf{a}_{N}\right)=\sigma_{z}^{2}\left(X_{N}^{T} X_{N}\right)^{-1}
$$

orthogonal planing
when $X_{N}^{T} X_{N}$ is diagonal (active experiment)

1.1. Optimality of a_{N} in LUE class

LUE class

$$
\left\{\alpha_{N}: \alpha_{N}=M_{N} Y_{N}, \quad \mathbf{E} \alpha_{N}=\mathbf{a}^{*}, \quad M_{N}-\text { deterministic }\right\}
$$

$$
\mathbf{E} \alpha_{N}=\mathbf{E} M_{N} Y_{N}=\mathbf{E} M_{N} X_{N} \mathbf{a}^{*}+\mathbf{E} M_{N} Z_{N} \text { conclusion: } M_{N} X_{N}=I
$$

covariance matrix

$$
\begin{aligned}
\operatorname{cov}\left(\alpha_{N}\right) & =\mathbf{E}\left\{M_{N} Z_{N} Z_{N}^{T} M_{N}^{T}\right\}=M_{N}\left(\mathbf{E} Z_{N} Z_{N}^{T}\right) M_{N}^{T} \\
\operatorname{cov}\left(\alpha_{N}\right) & =\sigma_{z}^{2} M_{N} M_{N}^{T}
\end{aligned}
$$

we will prove that

$$
\operatorname{cov}\left(\mathbf{a}_{N}\right) \leqslant \operatorname{cov}\left(\alpha_{N}\right)
$$

what means " \leqslant "
Definicja 1 Matrix $A \in R^{n, n}$ is nonnegative definite (i.e. $A \geqslant 0$), if for each vector $w=R^{n}$ it holds that

$$
w^{T} A w \geqslant 0
$$

Twierdzenie 1 Matrix of the for $A A^{T}$ is nonnegative for any A.
let us pu $A=M_{N}-L_{N}$

$$
\left(M_{N}-L_{N}\right)\left(M_{N}-L_{N}\right)^{T}=\left(M_{N}-L_{N}\right)\left(M_{N}^{T}-L_{N}^{T}\right)=M_{N} M_{N}^{T}-M_{N} L_{N}^{T}-L_{N} M_{N}^{T}+L_{N} L_{N}^{T}=(* * *)
$$

and notice that

$$
\begin{aligned}
& M_{N} L_{N}^{T}=M_{N} X_{N}\left(X_{N}^{T} X_{N}\right)^{-1}=I\left(X_{N}^{T} X_{N}\right)^{-1}=\left(X_{N}^{T} X_{N}\right)^{-1}=L_{N} L_{N}^{T} \\
& L_{N} M_{N}^{T}=\left(M_{N} L_{N}^{T}\right)^{T}=L_{N} L_{N}^{T}
\end{aligned}
$$

hence

$$
(* * *)=M_{N} M_{N}^{T}-L_{N} L_{N}^{T}
$$

and by above theorem we get

$$
\begin{aligned}
M_{N} M_{N}^{T}-L_{N} L_{N}^{T} & \geqslant 0 \quad / \cdot \sigma_{z}^{2} \\
\operatorname{cov}\left(\alpha_{N}\right)-\operatorname{cov}\left(\mathbf{a}_{N}\right) & \geqslant 0
\end{aligned}
$$

