3.

Convergence of random sequences

1. Types of convergence

Deterministic sequence

$$
\lim _{k \rightarrow \infty} a_{k}=g \Leftrightarrow \bigwedge_{\varepsilon>0} \bigvee_{k_{0}} \bigwedge_{k>k_{0}}\left|a_{k}-g\right|<\varepsilon
$$

Rate of convergence

notation $o()$ - "faster than"

$$
a_{k}=o\left(b_{k}\right) \Leftrightarrow \lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=0 \text { (and both sequences tends to zero) }
$$

notation $O()$ - "the same rate"

$$
a_{k}=O\left(b_{k}\right) \Leftrightarrow \bigvee_{c<\infty}\left|a_{k}\right| \leqslant c\left|b_{k}\right|
$$

Sequences of random variables $\left\{\varkappa_{k}\right\}$

notation $\lim _{k \rightarrow \infty}$ cannot be applied here, because $\left|a_{k}-g\right|<\varepsilon$ is the random event
Definicja 1 The sequence of random variables $\left\{\varkappa_{k}\right\}$ converges in probability (weakly) to $\varkappa^{\#}$ as $k \rightarrow \infty$ if for each $\varepsilon>0$ it holds that

$$
\lim _{k \rightarrow \infty} P\left(\left|\varkappa_{k}-\varkappa^{\#}\right|>\varepsilon\right)=0 \text {, or equivalently } \lim _{k \rightarrow \infty} P\left(\left|\varkappa_{k}-\varkappa^{\#}\right|<\varepsilon\right)=1
$$

The value $\varkappa^{\#}$ is called stochastic limit of $\left\{\varkappa_{k}\right\}$

$$
\begin{equation*}
P \lim _{k \rightarrow \infty} \varkappa_{k}=\varkappa^{\#} \tag{1}
\end{equation*}
$$

Definicja 2 The sequence of random variables $\left\{\varkappa_{k}\right\}$ converges with probability 1 (strongly) to \varkappa^{*} as $k \rightarrow \infty$ if

$$
P\left(\lim _{k \rightarrow \infty} \varkappa_{k}=\varkappa^{*}\right)=1
$$

Lemat 1 Convergence with probability 1 (strong) implies convergence in probability (weak).

Definicja 3 The sequence of random variables $\left\{\varkappa_{k}\right\}$ converges in the mean of order r to the limit \varkappa^{*} as $k \rightarrow \infty$ if

$$
\lim _{k \rightarrow \infty} \mathbf{E}\left|\varkappa_{k}-\varkappa^{*}\right|^{r}=0
$$

in particular, in the mean sqeare sense, if

$$
\lim _{k \rightarrow \infty} \mathbf{E}\left(\varkappa_{k}-\varkappa^{*}\right)^{2}=0
$$

Definicja 4 The sequence of randomvariables $\left\{\varkappa_{k}\right\}$ has has the rate of order $O\left(e_{k}\right)$ in probability as $k \rightarrow \infty$ (i.e. asymptotically), where $\left\{e_{k}\right\}$ is a deterministic number seqence convergent to zero, i.e.

$$
\varkappa_{k}=O\left(e_{k}\right) \text { in probability }
$$

if and only if $\left\{\frac{\varkappa_{k}}{e_{k}} \chi_{k}\right\}$ tends to zero in probability for each sequence $\left\{\chi_{k}\right\}$, such that $\lim _{k \rightarrow \infty} \chi_{k}=0$.
Definicja 5 Ciag zmiennych losowych $\left\{\varkappa_{k}\right\}$ ma szybkośćc zbieżności rzędu $O\left(e_{k}\right)$ wedtug średniej z kwadratem przy $k \rightarrow \infty$ jeżeli istnieje stata $0 \leq c<\infty$, taka, że

$$
\mathbf{E} \varkappa_{k}^{2} \leq c e_{k}
$$

Lemat 2 Jeżeli $\varkappa_{k}=O\left(e_{k}\right)$ wedtug średniej z kwadratem, to $\varkappa_{k}=O\left(\sqrt{e_{k}}\right)$ wedtug prawdopodobieństwa.
Definicja 6 The sequence of random variables X_{k} converges in distribution to the random variable X, if

$$
\lim _{k \rightarrow \infty} F_{k}(x)=F(x)
$$

2. Relations between various types of convergence

Proof of the fact that $P 1 \Longrightarrow P$
obviously from $P\left(\lim _{k \rightarrow \infty} \varkappa_{k}=\varkappa^{*}\right)=1$, we conclude that $\sum_{k=1}^{\infty} P\left(\left|\varkappa_{k}-\varkappa^{*}\right|<\varepsilon\right)<\infty$ and $P\left(\left|\varkappa_{k}-\varkappa^{*}\right|<\varepsilon\right) \rightarrow 0$ as $k \rightarrow \infty$

Proof of the fact that $L r \Longrightarrow P$
from definition

$$
\mathbf{E}\left|\varkappa_{k}-\varkappa^{*}\right|^{r}=\int_{\Omega}\left|\varkappa_{k}-\varkappa^{*}\right|^{r} d \omega \geqslant \int_{\left\{\left|\varkappa_{k}-\varkappa^{*}\right|>\varepsilon\right\}}\left|\varkappa_{k}-\varkappa^{*}\right|^{r} d \omega \geqslant \varepsilon^{r} \int_{\left\{\left|\varkappa_{k}-\varkappa^{*}\right|>\varepsilon\right\}} d \omega=\varepsilon^{r} P\left(\left|\varkappa_{k}-\varkappa^{*}\right|>\varepsilon\right)
$$

thus

$$
P\left(\left|\varkappa_{k}-\varkappa^{*}\right|>\varepsilon\right) \leqslant \frac{1}{\varepsilon^{r}} \mathbf{E}\left|\varkappa_{k}-\varkappa^{*}\right|^{r}
$$

in particular, for $r=2$ and $\varkappa^{*}=\mathbf{E} \varkappa$

$$
P(|\varkappa-\mathbf{E} \varkappa|>\varepsilon) \leqslant \frac{1}{\varepsilon^{2}} \operatorname{var} \varkappa
$$

Proof of the fact that: $\sum_{k=1}^{\infty} P\left(\left|\varkappa_{k}-\varkappa^{*}\right|<\varepsilon\right)<\infty$ and $\varkappa_{k} \xrightarrow{p} \varkappa^{*} \Longrightarrow \varkappa_{k} \xrightarrow{p 1} \varkappa^{*}$

$$
\begin{aligned}
P\left(\sup _{k \geqslant k_{0}}\left|\varkappa_{k}-\varkappa^{*}\right|\right. & >\varepsilon)=P\left(\left|\varkappa_{k}-\varkappa^{*}\right|>\varepsilon \text { for some particular } k \geqslant k_{0}\right)=P\left(\bigcup_{k=k_{0}}^{\infty}\left(\left|\varkappa_{k}-\varkappa^{*}\right|>\varepsilon\right)\right) \leqslant \\
& \leqslant \sum_{k=k_{0}}^{\infty} P\left(\left|\varkappa_{k}-\varkappa^{*}\right|>\varepsilon\right) \rightarrow 0, \text { (since the sum of infinite elements is finite) as } k_{0} \rightarrow \infty
\end{aligned}
$$

Example

if $P\left(\left|\varkappa_{k}-\varkappa^{*}\right|<\varepsilon\right)=O\left(\frac{1}{k}\right)$ then $\varkappa_{k} \xrightarrow{p} \varkappa^{*}$, but not $\varkappa_{k} \xrightarrow{p 1} \varkappa^{*}$

Problem

let $\varkappa_{k} \xrightarrow{p} \varkappa^{*}$ as $k \rightarrow \infty$, can we conclude that $g\left(\varkappa_{k}\right) \xrightarrow{p} g\left(\varkappa^{*}\right)$, as $k \rightarrow \infty$???
Yes - provided that $g()$ is continuous in the point \varkappa^{*}

3. Strong Law of Large Numbers (Kolmogorov)

Assumptions

(a) $X_{1}, X_{2}, \ldots, X_{N}$ - the sequence of independent and identically distributed random variables
(b) exist $\mathbf{E} X_{i}=m<\infty$

Thesis

$$
\frac{1}{N} \sum_{i=1}^{N} X_{i} \xrightarrow{p 1} m, \text { as } N \rightarrow \infty
$$

other versions of SLLN - see [Feller], [Krzyśko], [Ninness]

4. Strong Law of Large Nubmers (with relaxed assumptions)

Assumptions

(a) $X_{1}, X_{2}, \ldots, X_{N}$ - independent, but in general of different distributions
(b) exist $\mathbf{E} X_{i}=m_{i}<\infty$
(c) exist $\operatorname{var} X_{i}=\sigma_{i}^{2}<\infty$
(d) $\sum_{i=1}^{\infty} \frac{\sigma_{i}^{2}}{i^{2}}<\infty$

Thesis

$$
\frac{1}{N} \sum_{i=1}^{N} X_{i}-\frac{1}{N} \sum_{i=1}^{N} m_{i} \xrightarrow{p 1} 0, \text { as } N \rightarrow \infty
$$

5. Central Limit Theorem (Lindenberg-Levy)

Assumptions

(a) $X_{1}, X_{2}, \ldots, X_{N}$ - i.i.d.
(b) $\mathbf{E} X_{i}=m<\infty$
(c) $\operatorname{var} X_{i}=\sigma^{2}<\infty$

Thesis

$$
\frac{\sum_{i=1}^{N} X_{i}-N m}{\sigma \sqrt{N}} \xrightarrow{D} \mathcal{N}(0,1), \text { as } N \rightarrow \infty
$$

Conclusion

$$
\frac{\frac{1}{N} \sum_{i=1}^{N} X_{i}-m}{\frac{\sigma}{\sqrt{N}}} \xrightarrow{D} \mathcal{N}(0,1) \quad \frac{1}{N} \sum_{i=1}^{N} X_{i} \xrightarrow{D} \mathcal{N}\left(m, \frac{\sigma^{2}}{N}\right)
$$

Barry-Essena inequality
let $\varkappa_{N}=\frac{\sum_{i=1}^{N} X_{i}-N m}{\sigma \sqrt{N}}$

$$
\sup _{x}\left|F_{\varkappa_{N}}(x)-\Phi(x)\right| \leqslant \frac{33}{4} \frac{\mathbf{E}\left|X_{i}-m\right|^{3}}{\sigma^{3} \sqrt{N}}=O\left(\frac{1}{\sqrt{N}}\right)
$$

