
3.
Convergence of random sequences
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1. Types of convergence

Deterministic sequence
lim
k→∞

ak = g ⇔
∧
ε>0

∨
k0

∧
k>k0

|ak − g| < ε

Rate of convergence
notation o() —”faster than”

ak = o(bk)⇔ lim
k→∞

ak
bk

= 0 (and both sequences tends to zero)

notation O() —”the same rate”
ak = O(bk)⇔

∨
c<∞
|ak| 6 c |bk|

Sequences of random variables {κk}
notation limk→∞ cannot be applied here, because |ak − g| < ε is the random event

Definicja 1 The sequence of random variables {κk} converges in probability (weakly) to κ# as k →∞ if for each ε > 0
it holds that

lim
k→∞

P (
∣∣κk − κ#

∣∣ > ε) = 0, or equivalently lim
k→∞

P (
∣∣κk − κ#

∣∣ < ε) = 1

The value κ# is called stochastic limit of {κk}
P lim

k→∞
κk = κ# (1)

Definicja 2 The sequence of random variables {κk} converges with probability 1 (strongly) to κ∗ as k →∞ if

P ( lim
k→∞

κk = κ∗) = 1

Lemat 1 Convergence with probability 1 (strong) implies convergence in probability (weak).
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Definicja 3 The sequence of random variables {κk} converges in the mean of order r to the limit κ∗ as k →∞ if

lim
k→∞

E |κk − κ∗|r = 0,

in particular, in the mean sqeare sense, if
lim
k→∞

E(κk − κ∗)2 = 0

Definicja 4 The sequence of randomvariables {κk} has has the rate of order O(ek) in probability as k → ∞ (i.e.
asymptotically), where {ek} is a deterministic number seqence convergent to zero, i.e.

κk = O(ek) in probability

if and only if
{
κk
ek
χk

}
tends to zero in probability for each sequence {χk}, such that limk→∞ χk = 0.

Definicja 5 Ciąg zmiennych losowych {κk} ma szybkóśc zbieżnósci rzędu O(ek) według średniej z kwadratem przy
k →∞ jeżeli istnieje stała 0 ≤ c <∞, taka, że

Eκ2
k ≤ cek

Lemat 2 Jeżeli κk = O(ek) według średniej z kwadratem, to κk = O(
√
ek) według prawdopodobiénstwa.

Definicja 6 The sequence of random variables Xk converges in distribution to the random variable X, if

lim
k→∞

Fk(x) = F (x)
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2. Relations between various types of convergence

P1

P

D

Lr
odp. szybko

odp. szybko

Proof of the fact that P1 =⇒ P

obviously from P (limk→∞ κk = κ∗) = 1, we conclude that
∑∞

k=1 P (|κk − κ∗| < ε) < ∞ and P (|κk − κ∗| < ε) → 0 as
k →∞
Proof of the fact that Lr =⇒ P

from definition

E |κk − κ∗|r =

∫
Ω

|κk − κ∗|r dω >
∫
{|κk−κ∗|>ε}

|κk − κ∗|r dω > εr
∫
{|κk−κ∗|>ε}

dω = εrP (|κk − κ∗| > ε)

thus
P (|κk − κ∗| > ε) 6 1

εr
E |κk − κ∗|r

in particular, for r = 2 and κ∗ = Eκ
P (|κ − Eκ| > ε) 6 1

ε2
varκ

Proof of the fact that:
∑∞

k=1 P (|κk − κ∗| < ε) <∞ and κk
p→ κ∗ =⇒ κk

p1→ κ∗
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P (sup
k>k0
|κk − κ∗| > ε) = P (|κk − κ∗| > ε for some particular k > k0) = P

( ∞⋃
k=k0

(|κk − κ∗| > ε)

)
6

6
∞∑
k=k0

P (|κk − κ∗| > ε)→ 0, (since the sum of infinite elements is finite) as k0 →∞

Example

if P (|κk − κ∗| < ε) = O(1
k) then κk

p→ κ∗, but not κk
p1→ κ∗

Problem
let κk

p→ κ∗ as k →∞, can we conclude that g(κk)
p→ g(κ∗), as k →∞ ???

Yes —provided that g() is continuous in the point κ∗
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3. Strong Law of Large Numbers (Kolmogorov)

Assumptions
(a) X1, X2, ..., XN —the sequence of independent and identically distributed random variables

(b) exist EXi = m <∞
Thesis

1

N

N∑
i=1

Xi
p1→ m, as N →∞

other versions of SLLN —see [Feller], [Krzýsko], [Ninness]

4. Strong Law of Large Nubmers (with relaxed assumptions)

Assumptions
(a) X1, X2, ..., XN —independent, but in general of different distributions

(b) exist EXi = mi <∞
(c) exist varXi = σ2

i <∞
(d)

∑∞
i=1

σ2i
i2 <∞

Thesis
1

N

N∑
i=1

Xi −
1

N

N∑
i=1

mi
p1→ 0, as N →∞
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5. Central Limit Theorem (Lindenberg—Levy)

Assumptions
(a) X1, X2, ..., XN —i.i.d.

(b) EXi = m <∞
(c) varXi = σ2 <∞
Thesis ∑N

i=1Xi −Nm
σ
√
N

D→ N (0, 1), as N →∞

Conclusion
1
N

∑N
i=1Xi −m

σ√
N

D→ N (0, 1)
1

N

N∑
i=1

Xi
D→ N (m,

σ2

N
)

Barry-Essena inequality

let κN =
∑N

i=1Xi−Nm
σ
√
N

sup
x
|FκN (x)− Φ(x)| 6 33

4

E |Xi −m|3

σ3
√
N

= O

(
1√
N

)
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