2.
 Rejection method

Lemma 1. If $X^{\sim} f(x)$ and $U^{\sim} \mathcal{U}[0,1]$ then the pair (X, Y), were $Y=c f(X) U$, and c is any constant, i.e.

$$
(X, c f(X) U)
$$

is uniformly distributed on the set

$$
A=\{(x, y): x \in R, y \in[0, c f(x)]\}
$$

Proof

conditional distribution (fixed X)

$$
F_{y \mid x}(\alpha)=P(Y \leqslant \alpha \mid X=x)=P(c f(X) U \leqslant \alpha \mid X=x)=P(c f(x) U \leqslant \alpha)=P\left(U \leqslant \frac{\alpha}{c f(x)}\right)=\frac{\alpha}{c f(x)}
$$

conditional probability density dunction

$$
f_{y \mid x}(\alpha)=\frac{\partial F_{y \mid x}(\alpha)}{\partial \alpha}=\frac{1}{c f(x)}-\text { conditional distribution is uniform }
$$

let us take any set $B \subseteq A$

$$
P((X, Y) \in B)=P(B)=\iint_{B} f(x, y) d x d y=[\text { Bayes theorem }]=\iint_{B} f_{y \mid x}(\alpha) f(x) d x d \alpha=\frac{1}{c} \iint_{B} d x d y=\frac{1}{c} \mu(B)
$$

in particular, for $B=A$

$$
P((X, Y) \in A)=1=\frac{1}{c} \mu(A), \text { hence } c=\mu(A)
$$

conclusion

$$
P(B)=\frac{\mu(B)}{\mu(A)} \text { - uniform on the whole set } A
$$

Lemma 2. If the pair of random variables (X, Y) is uniformly distributed on the set

$$
A=\{(x, y): x \in R, y \in[0, c f(x)]\}
$$

then X has the probability density function equal to $f(x)$.

Proof

let D be any subset of R

$$
D \subseteq R
$$

and B_{D} - the set of pairs (x, y), such that $x \in D$

$$
B_{D}=\{(x, y): x \in D, y \in[0, c f(x)]\} \subseteq A
$$

distribution of X has the property that

$$
P(X \in D)=P(D)=P\left((X, Y) \in B_{D}\right)=P\left(B_{D}\right)=[\text { uniform }]=\frac{\mu\left(B_{D}\right)}{\mu(A)}=\frac{\int_{D} c f(x) d x}{\int_{R} c f(x) d x}=\int_{D} f(x) d x
$$

Scheme of the method

$f(x)$ - p.d.f. of X, (we want to generate)
$g(x)$ - supporting p.d.f. (easy to generate), it exists $c>0$, such that

$$
f(x) \leqslant c g(x) \text { for each } x \in R
$$

Step 1. Generation

- generate realizations x of random variable X having the p.d.f. $g(x)$ (e.g. by the inverse method)
- generate realizations u of random variables U from tha uniform distribution $\mathcal{U}[0,1]$
- create the pairs $(x, y)=(x, c g(x) u)$, which have uniform distribution on the set $A_{g}=\{(x, y): x \in R, y \in[0, c g(x)]\}$

Step 2. Rejection

- reject the pairs (x, y) from Step 1, which does not belong to $A_{f}=\{(x, y): x \in R, y \in[0, f(x)]\}$, i.e. leave (select) the pairs which fulfills the following condition

$$
c g(x) u \leqslant f(x)
$$

Conclusion - we obtain accurate generator (no approximation).

Applicability conditions

1) for the function $f(x)$ we can propose proper $g(x)$
2) $g(x)$ is easy to generate
3) probability of rejection should be relatively small

$$
\begin{aligned}
P(\text { selection }(x, y)) & =\frac{\mu\left(A_{f}\right)}{\mu\left(A_{g}\right)}=\frac{\int_{-\infty}^{\infty} f(x) d x}{c \int_{-\infty}^{\infty} g(x) d x}=\frac{1}{c} \\
\text { we postulate } \frac{1}{c} & \rightarrow \max , \text { but } c \geqslant 1
\end{aligned}
$$

Accurate generation of normal distribution

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \quad g(x)=\frac{1}{2} e^{-|x|} \text { - Laplace distribution }
$$

one can show that

$$
f(x) \leqslant c g(x), \text { where } c=\sqrt{\frac{2 e}{\pi}}
$$

selection condition

$$
\begin{aligned}
\sqrt{\frac{2 e}{\pi}} \frac{1}{2} e^{-|x|} u & \leqslant \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \\
(|x|-1)^{2} & \leqslant-2 \ln u
\end{aligned}
$$

Comment

before rejection/selection x^{\prime} 's have Laplace distribution, and after rejection/selection $x^{\sim} \mathcal{N}(0,1)$

