1.

Generation of random numbers (inverse method)

1. How to obtain pseudo-random numbers

nonlinear feedback

$$
x_{k}=\mathcal{F}\left(x_{k-1}, x_{k-2}, \ldots, x_{k-q}\right)
$$

Postulates concerning \mathcal{F} :

1) long period of the sequence $\left\{x_{k}\right\}$
2) regular distribution of x_{k}

2. Inverse method

Problem formulation

- we have high quality generator of uniformly distributed random variable $u^{\sim} \mathcal{U}[0,1]$
- we want to generate realizations of random variable X of given probability density function $f(x)$, such that the distribution function $F(x)=P(X \leqslant x)=\int_{-\infty}^{x} f(x) d x$ is strictly monotonous and its inversion has analytic form

$F^{-1}()$ exists and is well defined

$$
\begin{array}{lc}
u=F(x), & u \in[0,1] \\
x=F^{-1}(u), & x \in R
\end{array}
$$

Lemma 1

If $U^{\sim} \mathcal{U}[0,1]$, then $X=F^{-1}(U)$ has distribution function $F(X)$ (i.e. its probability density function is $f(x)$).
Proof
$P\{X \leqslant x\}=P\left\{F^{-1}(U) \leqslant x\right\}=P\{U \leqslant F(x)\}=(\ldots)$

$(\ldots)=F(x)$

Lemma 2

If $X^{\sim} F(x)$, then $U=F(X)^{\sim} \mathcal{U}[0,1]$.

Proof

$P(U \leqslant u)=P(F(X) \leqslant u)=P\left(X \leqslant F^{-1}(u)\right)=F\left(F^{-1}(u)\right)=u$

Scheme of the method

1) generate $u^{\sim} \mathcal{U}[0,1]$
2) for the designed p.d.f. $f(x)$ compute $F()$ and its inverse $F^{-1}()$
3) compute $F^{-1}(u)$

Example

$$
\begin{aligned}
f(x) & =\left\{\begin{array}{l}
\alpha e^{-\alpha x}, \text { as } x \geqslant 0 \\
0, \text { as } x<0
\end{array}\right. \\
F(x) & =\int_{0}^{x} \alpha e^{-\alpha x} d x=\left[-e^{-\alpha x}\right]_{0}^{x}=1-e^{-\alpha x}=u \\
e^{-\alpha x} & =1-u \\
-\alpha x & =\ln (1-u) \\
x & =-\frac{\ln (1-u)}{\alpha}
\end{aligned}
$$

please notice that

$$
-\frac{\ln u}{\alpha} \text { hasthe same distribution }
$$

Exercices

triangular distribution
Laplace distribution
Cauchy/Lorenz distribution

