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7
Large-scale interconnected systems

The paper addresses the problem of parameter estimation of elements in
complex, interconnected systems. Similarity between causes of biases in the
least squares estimates for a simple SISO linear dynamic object, and for
a MIMO linear static system with composite structure, was noticed in the
paper. For linear complex static system, the instrumental variable estimate
was proposed and compared with the least squares approach. The strong
consistency of the presented parameter estimate was proved. Also the op-
timal values of instrumental variables were established, and the method of
their suboptimal generation was presented. The conclusions were verified
in numerical experiments.

7.1 Introduction

We consider the problem of parameter estimation in complex, intercon-
nected systems with the presence of random noises. In a lot of commonly
met hierarchical control problems, the accurate mathematical models of
the particular system components are needed. Under the term ’complex’
we understand the fact that the system is built of a number of intercon-
nected components (subsystems), e.g., in the typical production system
each element is excited by the outputs of other blocks (see [26]). In con-
sequence of mutual interconnections, the components are dependent and
their separation may be impossible or too expensive. In general, excitations
of particular element cannot be freely generated in the experiment. It leads
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to the problem of structural identifiability (i.e. identifiability of separate
elements does not imply identifiability of the whole interconnected system
[52]) and usually badly conditioned numerical tasks. Moreover, some in-
teraction signals are hidden, and cannot be directly measured. For these
reasons, the algorithms dedicated for single element cannot be directly ap-
plied in complex system analysis.
Identifiability of the element, which operates in complex system, depends

additionally on the system structure and the values of parameters of other
elements. Particularly, the components preceding identified object must
guarantee persistency of the input excitation. In the paper we apply and
compare two methods — least squares (l.s.) and instrumental variables (i.v.).
It is commonly known from the linear system theory, that the least

squares approach applied for the simple SISO linear dynamic object leads
to biased estimate. The reason of the bias results from the property of
autoregression, i.e. the correlation between the noise and the values of pre-
vious outputs of the identified object (see the Appendix). Analogously, for
the complex, interconnected systems with random noises, the least squares
estimate has the non-zero systematic error even if the number of measure-
ment data tends to infinity. The reason of the bias is that the output noises
are transferred to the inputs through the structural feedback.
In the paper, the formal similarity of these problems is shown and the

instrumental variables technique, used so far for the linear dynamics iden-
tification, was successfully generalized for the systems with complex struc-
ture. It is shown that the proposed i.v. estimate is strongly consistent
independently of the system structure and the color of the noise. More-
over, the computational complexity of the method is comparable with the
l.s.algorithm. In Section 8.2 the identification problem and the purpose is
formulated in detail. Next, in Section 3, the properties of the least squares
based algorithm proposed in [52] are reminded. In particular, the reason of
its bias is shown in detail, and finally, in Section 7.4 the new i.v. estimate
is introduced and analyzed. Finally, in Section 7.6, the performance of the
method is demonstrated by the simulation example.

7.2 Statement of the Problem

Consider the system shown in Fig. 7.1. It consists of n linear elements
described as follows

yi = aixi + biui + ξi (i = 1, 2, ..., n),
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where

u = (u1, u2, ..., un)
T

x = (x1, x2, ..., xn)
T

y = (y1, y2, ..., yn)
T

are the external inputs, interaction inputs, and system outputs, respec-
tively. The processes

δ = (δ1, δ2, ..., δn)
T

ξ = (ξ1, ξ2, ..., ξn)
T

are random disturbances. The block H determines the system structure in
the following way

xi = Hiy + δi, (7.1)

where Hi is the ith row of the binary matrix H (i.e. Hi,j = 0 — ’no connec-
tion’, Hi,j = 1 — ’is connection’).
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FIGURE 7.1. The complex n-element linear static system

The aim is to estimate parameters {(ai, bi)}ni=1 of the particular elements
using the set of data {(u(k), y(k))}Nk=1 collected in the experiment. We em-
phasize that the internal excitations x(k) cannot be measured.
We assume that:
(A1) The structure of the system (i.e. the matrix H) is known.
(A2) The system is well defined, i.e. for any (u, δ, ξ) it exists unique y

(see [52]).
(A3) The noises δ, and ξ are zero-mean, mutually independent, and

independent of u.
(A4) In the noise-free case (δ = 0, and ξ = 0) the system would be

identifiable (see [52]).
(A5) The excitations are rich enough, i.e. the matrix

EN = (e1, e2, ..., eN ) ,



134 7. Large-scale interconnected systems

where
e = (uT , θT )T and θ = Aδ + ξ,

is of full rank with probability 1.
Introducing the matrices

A = diag(a1, a2, ..., an) (7.2)

B = diag(b1, b2, ..., bn) (7.3)

H = HT
1 , H

T
2 , ...,H

T
n

T
(7.4)

the whole system can be described in the following compact form

y = Ax+Bu+ ξ
x = Hy + δ

. (7.5)

Inserting x to the first equation in (7.5) we obtain

y = A (Hy + δ) +Bu+ ξ,

(I −AH) y = Bu+Aδ + ξ,

which leads to
y = Ku+Gθ (7.6)

where

G = (I −AH)−1, (7.7)

K = (I −AH)−1B = GB.

The equation (7.6) resembles description of the object with the input u, the
output y, the transfer matrix K, and the noise Gθ. Invertibility of (I−AH)
in (7.7) is equivalent to assumption (A2).

7.3 Least Squares Approach

Introducing the vectors of input-output data of ith element

YiN = [y
(1)
i , y

(2)
i , ..., y

(N)
i ], (7.8)

WiN = [w
(1)
i , w

(2)
i , ..., w

(N)
i ],

where wi = (xi, ui)
T ,

we obtain the measurement equation

YiN = (ai, bi)WiN + ξiN . (7.9)
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Since the input xi included in wi is unknown (cannot be measured), the
least squares estimate cannot be derived directly from (7.9). Owing to (7.1)
the natural substitution is

wi = (xi, ui)
T , where xi = Hiy = xi − δi.

It leads to the following least squares estimate

(al.s.i , bl.s.i ) = YiNW
T
iN WiNW

T
iN

−1
, (7.10)

where
WiN = [w

(1)
i , w

(2)
i , ..., w

(N)
i ].

Remark 7.1 The estimate (7.10) originates from the modified version of
measurement equation (7.9), in which WiN was substituted with WiN

YiN = (ai, bi)WiN +ΘiN . (7.11)

Consequently, in (7.11) the disturbance

ΘiN = [θ
(1)
i , θ

(1)
i , ..., θ

(N)
i ]

appears instead of ξiN . The situation is similar to the problem of identi-
fication of the simple linear dynamics with autoregression (see example in
the Appendix). It was shown in [52], that because of correlation between the
elements of ΘiN and WiN , the estimation error

(al.s.i , bl.s.i )− (ai, bi) = ΘiNWiN WiNW
T
iN

−1

does not tend to zero, as N → ∞.

7.4 Instrumental Variables Approach

To solve the problem shown in Remark 7.1 we propose the analogous strat-
egy as for the SISO dynamic system identification (see e.g. [38] and [74]),
i.e., generalization of (7.10) to the following form

(ai.v.i , bi.v.i ) = YiNΨT
iN WT

iNΨT
iN

−1
, (7.12)

where
ΨiN = [ψ

(1)
i ,ψ

(2)
i , ...,ψ

(N)
i ]

is the additional matrix of instrumental variables, of the same dimensions
as WiN , i.e.

ψ
(k)
i = ψ

(k)
i,1 ,ψ

(k)
i,2

T

.
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We impose the following two conditions on ΨiN :
(C1) The instrumental variables ψi,1, and ψi,2 are correlated with the

input ui, such that

1

N
WT
iNΨT

iN =
1

N

N

k=1

ψ
(k)
i w

(k)T

i → Eψiw
T
i

with probability 1 as N → ∞, and the limit matrix EψiwTi is of full
rank.
(C2) Simultaneously, ψi,1, and ψi,2 are not correlated with the aggre-

gated output noise θi, i.e.,

ΨiN = LiEN ,

where

Li =
Γi 0
Ii 0

,

and

Ii = [0, ..., 0, 1, 0, ..., 0].

Theorem 7.1 If the instrumental variables matrix ΨiN fulfils (C1) and
(C2) then

(ai.v.i , bi.v.i )→ (ai, bi) (7.13)

with probability 1, as N → ∞.
Proof. The estimation error has the form

Δ = (ai.v.i , bi.v.i )− (ai, bi) = (7.14)

= ΘiNΨT
iN WiNΨT

iN

−1
=

=
1

N
ΘiNΨT

iN

1

N
WiNΨT

iN

−1

where
WiN = FiEN

and

Fi =
HiK HiG
Ii 0

.

Since, according to (C1) and (C2) it holds that

1

N
WiNΨT

iN → cov(xi,ψi,1) cov(ui,ψi,1)
cov(xi,ψi,2) cov(ui,ψi,2)

,

1

N
ΘiNΨT

iN → 0,
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from the Slutzky theorem we conclude (7.13).
In real applications the procedure of ΨiN -generation is of fundamental

meaning. Let us introduce the quality index of instrumental variables

Q(ΨiN ) =  Δ(ΨiN ) = λmax Δ(ΨiN )Δ
T (ΨiN ) . (7.15)

The following theorem holds.

Theorem 7.2 The optimal instruments with respect to the value of Q(ΨiN )
has the form

ψ∗i = wi = (xi, ui)
T , where xi = E(xi|u) = HiKu, (7.16)

i.e.,
Γi = HiK.

Proof. It is obvious that

yi = (ai, bi)wi + θi = (ai, bi)wi + aiHiGθ + θi = (ai, bi)wi + zi,

where zi = aiHiGθ + θi is a zero-mean disturbance, uncorrelated with the
elements of the ’expected’ input vector wi.
According to (7.14) we obtain that

Δ(ΨiN )Δ
T (ΨiN ) =

1√
N

ΘiN
1√
N

ΨT
iN ·

· 1

N
WiNΨT

iN

−1
1

N
ΨiNW

T
iN

−1
·

· 1√
N

ΨiN
1√
N

ΘT
iN ,

and making use of the property that

λmax Δ(ΨiN )Δ
T (ΨiN ) = λmax ΔT (ΨiN )Δ(ΨiN ) ,

for N large and Ψ∗
iN =W iN = [w

(1)
i , w

(2)
i , ..., w

(N)
i ] we simply get

Q(Ψ∗
iN ) = λmax

1

N
W iNW

T

iN

−1
varθi.

Under Lemma 6 in [56], for each ΨiN it holds that

Q(Ψ∗
iN ) ≤ Q(ΨiN )

with probability 1.
Since the matrix K is unknown, the result (7.16) is not constructive, but

gives the general concept of using the estimates of the noise-free interactions
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xi. In the simulation we used the approximation of K obtained by the least
square method and implemented the recursive version of the algorithm

(ai.v.i , bi.v.i )(k) = (a
i.v.
i , bi.v.i )(k−1)+

+ y
(k)
i − (ai.v.i , bi.v.i )(k−1)w

(k)
i ψ

(k)T

i Pi,k,

where

Pi,k =
Pi,k−1 − Pi,k−1w(k)i ψ

(k)T

i Pi,k−1
1 + ψ

(k)T

i Pi,k−1w
(k)
i

.

7.5 Nonlinear dynamic components

The algorithm presented in Section 7.4 can be directly applied for the nets
of nonlinear dynamic systems with the FIR Hammerstein-type components
(see Fig. 7.2). Each component is described by the following equation
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FIGURE 7.2. Hammerstein model of the component

yi,k =

ni

j=0

γ
(i)
j μi(ui,k−j) +

pi

j=0

λ
(i)
j ηi(xi,k−j) + zi,k, (7.17)

where {γ(i)j }nij=0, and {λ(i)j }pij=0 are unknown impulse responses of the lin-
ear dynamic blocks in the ith component, with known orders ni and pi,
respectively. Similarly, the functions μi() and ηi() represents unknown non-
linearities in both channels in the ith component of the complex system of
known parametric representation

μi(u) =

mi

t=1

c
(i)
t f

(i)
t (u), (7.18)

ηi(y) =

qi

l=1

d
(i)
l g

(i)
l (y), (7.19)
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with given basis functions {f (i)t (u)}mi
t=1 and {g(i)l (y)}qil=1. The signal zi,k

is additive random zero-mean output noise. The goal is to estimate both
the parameters {c(i)t }mi

t=1 and {d(i)l }qil=1 of nonlinearities μi(u) and ηi(y), and
the impulse responses {γ(i)j }nij=0, and {λ(i)j }pij=0 of the linear dynamic blocks,
using input-output measurements of the whole complex system, presented
in Fig. 2.10. Introducing the vectors of mixed products of parameters

θ(i) = γ
(i)
0 c

(i)
1 , ..., γ

(i)
0 c

(i)
mi
, ..., γ(i)ni c

(i)
1 , ..., γ

(i)
ni c

(i)
mi

T

,

ϑ(i) = λ
(i)
1 d

(i)
1 , ...,λ

(i)
1 d

(i)
qi , ...,λ

(i)
pi d

(i)
1 , ...,λ

(i)
pi d

(i)
qi

T

,

and the regressors

φ
(i)
k = f

(i)
1 (ui,k), ..., f

(i)
mi
(ui,k), ..., f

(i)
1 (ui,k−ni), ..., f

(i)
mi
(ui,k−ni)

T

,

ϕ
(i)
k = g

(i)
1 (yi,k−1), ..., g

(i)
qi (yi,k−1), ..., g

(i)
1 (yi,k−pi), ..., g

(i)
qi (yi,k−pi)

T

,

we can show (7.17) in the compact form

yi,k = φ
(i)T
k θ(i) + ϕ

(i)T
k ϑ(i) + zk.

The global matrices A and B (see (7.2) and (7.3)) and the input vectors
are, for the Hammerstein components, defined as follows

A = diag(θ(1), θ(2), ..., θ(n)),

B = diag(ϑ(1),ϑ(2), ...,ϑ(2)).

u = φ(1)T ,φ(2)T , ...,φ(n)T
T

x = ϕ(1)T ,ϕ(2)T , ...,ϕ(n)T
T

y = (y1, y2, ..., yn)
T

The measurement equation has the form

YiN = (θ
(i),ϑ(i))WiN + ZiN ,

where

YiN = [yi,1, yi,2, ..., yi,N ],

ZiN = [zi,1, zi,2, ..., zi,N ],

WiN = [wi,1, wi,2, ..., wi,N ],

wi,k = ϕ
(i)T
k ,φ

(i)T
k

T

,
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and the least squares and instrumental variables estimate

(θ(i)
l.s.

,ϑ(i)
l.s.

) = YiNW
T
iN WiNW

T
iN

−1

(θ(i)
i.v.

,ϑ(i)
i.v.

) = YiNΨT
iN WiNΨT

iN

−1

can be computed analogously as in Sections 7.3 and 7.4.

7.6 Simulation Example

In this section we present the performance of the algorithm on the example
of the simple, two-element linear cascade system with feedback (see Fig.
7.3). We set (a1, b1) = (1, 1), and (a2, b2) = (2, 2) and the interconnections
are coded as follows

H =
0 1
1 0

.

The system is excited by two independent uniformly random processes
u1, u2 ∼ U(0, 1), and disturbed by zero-mean noises δ1, ξ2 ∼ U(−0.1, 0.1).
For both elements, the instrumental variables estimates are computed and
compared with the least squares results.

1u 2u
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12 yx

2

1

FIGURE 7.3. The two-element cascade system with feedback

In Fig. 7.4 we present the Euclidean norm of the error Δ for both algo-
rithms.

7.7 Summary

The idea of instrumental variables estimate was successfully generalized
for the complex, interconnected systems. Since the production and trans-
portation systems usually work in steady state, we limited ourselves to the
static blocks. However, generalization for the FIR linear dynamic compo-
nents seems to be quite simple. In the contrary to the traditional least
squares approach, the proposed algorithm recovers true parameters of sub-
systems. General conditions are imposed on the instrumental variables for
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FIGURE 7.4. The estimation error Δ versus number of measurements N

to estimate to be consistent, and then the form of optimal values of instru-
ments is shown. We emphasize that the method works for any structure of
the system and for any distribution of the random noises.

7.8 Appendix

In this section the subscript k is used for the time instant. Consider the
simple AR(1) linear dynamic object with the input uk and the output vk,
disturbed by the random process εk, i.e.

vk = buk + avk−1, and yk = vk + εk.

Since the noise-free output vk is unknown, we must base on the difference
equation describing dependence between uk and the measured output yk

yk = buk + ayk−1 + zk = (a, b)φk + zk,

where φk = (yk−1, uk)
T and the resulting disturbance

zk = εk − aεk−1
is obviously correlated with yk−1, included in the generalized ’input’ φk.


