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Nonparametric Instrumental Variables

for Narmax System Identification

Grzegorz Mzyk

Abstract—A combined, parametric-nonparametric identification algo-

rithm for the NARMAX systems was proposed. The parameters of

individual blocks are aggregaed in one matrix (including mixed products

of parameters). The aggregated matrix is estimated by instrumental

variables technique with the instruments generated by nonparametric

kernel method. Finally, the result is decomposed to obtain parameters

of the system elements. The consistency of the proposed estimate was

proved and the rate of converence was analysed. Also, the form of

optimal instrumental variables was established and the method of

their approximate generation was proposed. The idea of nonparametric

generation of instrumental variables guarantees that the I.V. estimate is

well defined, improves behaviour of the method and allows for reducing

the estimation error. The method is simple in implementation and robust

on correlatred noise.

Keywords—System identification, instrumental variables, NARMAX

system, nonparametric methods.

I. STATEMENT OF THE PROBLEM

In the paper we consider a scalar, discrete-time, asymptotically

stable nonlinear dynamic system shown in Fig. 1 and described by

the following equation (cf. [2], [13], [15], [14], [1]):

yk =

p∑
j=1

λjη(yk−j) +

n∑
i=0

γiµ(uk−i) + zk (1)

where

µ(u) =

m∑
t=1

ctft(u) (2)

η(y) =

q∑
l=1

dlgl(y)

The structure is well known in the literature as the additive NARMAX

model ([2]). The signals yk, uk are zk are the output, the input and
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Figure 1. The additive NARMAX system

the noise, respectively. We take the following assumptions.

Assumption 1: The static nonlinear characteristics are of given

parametric form

µ(u) =

m∑
t=1

ctft(u) (3)

η (y) =

q∑
l=1

dlgl(y)
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where f1(),...,fm() and g1(), ..., gq() are a priori known linearly

independent functions, such that

|ft(u)| 6 pmax, (4)

|gl(y)| 6 pmax,

some constant pmax.

Assumption 2: The linear dynamic objects have finite impulse

responses, i.e.,

vk =

n∑
i=0

γiwk−i (5)

v′k =

p∑
j=1

λjw
′
k−j

with known orders n and p.

Assumption 3: The input process {uk} is a sequence of i.i.d.

bounded random variables, i.e. it exists (unknown) umax, such that

|uk| < umax <∞.

Assumption 4: The output noise {zk} is correlated linear process.

It can be written as

zk =

∞∑
i=0

ωiεk−i, (6)

where {εk} is some unknown zero-mean (Eεk = 0) and bounded

(|εk| < εmax < ∞) i.i.d. process, independent of the input {uk},
and {ωi}∞i=0 (

∑∞
i=0 |ωi| <∞) is the unknown stable linear filter.

Assumption 5: The system as a whole is asymptotically stable.

Assumption 6: Only the input {uk} and the output of the whole

system {yk} are accessible for measurements.

Let

Λ = (λ1, .., λp)
T

(7)

Γ = (γ0, ..., γn)T

c = (c1, ..., cm)T

d = (d1, ..., dq)
T

denote true (unknown) parameters of the system. Let us notice that the

input-output description of the system, given by (1)-(2) is not unique.

For each pair of constants α and β, the systems with parameters

Λ, Γ, c, d and βΛ, αΓ, c/α, d/β cannot be distinguished, i.e.,

are equivalent (see (1)-(2)). For the uniqueness of the solution we

introduce the following technical assumption (see [1]):

(a) the matrices ΘΛd = ΛdT and ΘΓc = ΓcT are not both zero;

(b) ||Λ||2 = 1 and ||Γ||2 = 1, where ||.||2 is Euclidean vector

norm;

(c) first non-zero elements of Λ and Γ are positive.

Let

θ = (γ0c1, ..., γ0cm, ..., γnc1, ..., γncm, (8)

λ1d1, ..., λ1dq, ..., λpd1, ..., λpdq)
T

= (θ1, ..., θ(n+1)m, θ(n+1)m+1, ..., θ(n+1)m+pq)
T

be the vector of aggregated parameters (1) obtained by inserting (2)

to (1), and let φk be respective generalized input vector

φk = (f1(uk), ..., f1(uk−n), ..., f1(uk−1), ..., fm(uk−n), (9)

g1(yk−1), ..., gq(yk−1), ..., g1(yk−p), ..., gq(yk−p))
T

.

Thanks to above notation, description (1)-(2) can be simplified to the

form yk = φTk θ + zk, which means that the system remains linear

with respect to parameters. For k = 1, ..., N we obtain

YN = ΦNθ + ZN (10)
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where YN = (y1, ..., yN )T , ΦN = (φ1, ..., φN )T , and ZN =
(z1,..., zN )T .

The system in Fig. 1 is more general then often met in the literature

classic Hammerstein system. The Hammerstein system is its special

case, when the function η() is linear (see Appendix VIII-A). The

additive NARMAX system is also not equivalent to widely considered

in the literature Wiener-Hammerstein (sandwich) system, where two

linear dynamic blocks surround one static nonlinearity. In spite of

many possibilities of applications in various domains ([7], [1], [22]),

relatively small attention was paid to this structure in the literature.

The purpose of identification is to recover parameters in Λ, Γ, c
and d (given by (7)), using the input-output measurements (uk, yk)
(k = 1, ..., N ) of the whole system.

In the next Section the least squares based identification algorithm

(see [1]) will be presented for white disturbances. Then, the reason

of its asymptotic bias will be shown for correlated noise. Next, the

new, asymptotically unbiased, instrumental variables based estimate

is proposed. The idea originates from the linear system theory (see

e.g. [18] and [21]), where the instrumental variables technique is

used for identification of simple one-element linear dynamic objects.

The proposed method is then compared with the least squares. In

particular, the consistency of the proposed estimate was shown even

for correlated disturbances. The form of the optimal instrumental

variables was established and the method of their appropriate gener-

ation was described. Also, the rate of convergence is analyzed and

the results of experiments are included.

II. LEAST SQUARES AND SVD APPROACH

For comparison studies with the proposed further instrumental

variables method we start from presentation of the two-stage algo-

rithm based on least squares estimation of the aggregated parameter

vector and decomposition of the obtained result with the use of SVD

algorithm (see [1], [10], [11]).

Stage 1. Compute the LS estimate

θ̂
(LS)

N = (ΦT
NΦN )−1ΦT

NYN (11)

of the aggregated parameter vector θ (see (8) and (10)), and next

construct (by the plug-in method) evaluations Θ̂
(LS)
Λd and Θ̂

(LS)
Γc

of the matrices ΘΛd = ΛdT and ΘΓc = ΓcT , respectively (see

condition (a) above).

Stage 2. Perform the SVD (singular value decomposition – see

Appendix IX-A) of the matrices Θ̂
(LS)
Λd and Θ̂

(LS)
Γc :

Θ̂
(LS)
Λd =

min(p,q)∑
i=1

δiξ̂iζ̂
T

i (12)

Θ̂
(LS)
Γc =

min(n,m)∑
i=1

σiµ̂iν̂
T
i

and next compute the estimates of parameters of particular blocks

(see (7))

Λ̂
(LS)
N = sgn(ξ̂1[κξ1 ])ξ̂1 (13)

Γ̂
(LS)
N = sgn(µ̂1[κµ1 ])µ̂1

ĉ
(LS)
N = sgn(µ̂1[κµ1 ])σ1ν̂1

d̂
(LS)
N = sgn(ξ̂1[κξ1 ])δ1ζ̂1

where x[k] denotes k-th element of the vector x and κx = min{k :
x[k] 6= 0}.

Let us analyze the form of SVD representations of the theoretical

matrices ΘΓc = ΓcT and ΘΛd = ΛdT . Each matrix being the

product of two vectors has the rank equal 1, and only one singular

value is not zero, i.e.,

ΘΓc =

min(n,m)∑
i=1

σiµiν
T
i

and

σ1 6= 0, σ2 = ... = σmin(n,m) = 0

thus

ΘΓc = σ1µ1ν
T
1 , (14)

where ‖µ1‖2 = ‖ν1‖2 = 1. Representation of ΘΓc given by (14) is

obviously unique [10]. To obtain Γ, which fulfills the condition (b)

one can take Γ = µ1, or Γ = −µ1. The condition (c) guarantees

uniqueness of Γ. The remaining part of decomposition allows for

computing c. The vectors Λ and d can be obtained from ΘΛd in a

similar way.

The Singular Value Decomposition allows for splitting of aggre-

gated matrices of parameters Θ̂
(LS)
Γc and Θ̂

(LS)
Λd into products of two

vectors (see (12)) and estimating Γ̂
(LS)
N ĉ

(LS)T
N and Λ̂

(LS)
N d̂

(LS)T
N

according to (13). It was shown in [1] that

(µ̂1, σ1ν̂1) = arg min
c∈Rm,Γ∈Rn

∥∥∥Θ̂(LS)
Γc − ΓcT

∥∥∥2

. (15)

and for the noise-free case (zk ≡ 0) the estimates (13) equal to true

system parameters, i.e.,

Λ̂
(LS)
N = Λ, (16)

Γ̂
(LS)
N = Γ,

ĉ
(LS)
N = c,

d̂
(LS)
N = d.

Moreover, if the noise {zk} is i.i.d. process, independent of the input

{uk}, then it holds that

Λ̂
(LS)
N → Λ, (17)

Γ̂
(LS)
N → Γ,

ĉ
(LS)
N → c,

d̂
(LS)
N → d,

with probability 1, as N →∞.

By taking (10) and (11) into account, the estimation error of the

vector θ by the least squares can be expressed as follows

∆
(LS)
N = θ̂

(LS)

N − θ = (18)(
ΦT
NΦN

)−1

ΦT
NZN

=

(
1

N

N∑
k=1

φkφ
T
k

)−1(
1

N

N∑
k=1

φkzk

)
.

If {zk} is a zero-mean white noise with finite variance, independent

of {uk}, then all elements of the vector ZN are independent of the

elements of the matrix ΦN and from ergodicity of the noise and the

process {φk} (see Appendix IX-H) it holds that ∆
(LS)
N → 0 with

probability 1, as N → ∞. Nevertheless, if {zk} is correlated, i.e.,

Ezkzk+i 6= 0 for some i 6= 0, then the LS estimate (11) of θ is

not consistent because of the dependence between zk, a the values

gl(yk−i) (l = 1, ..., q, i = 1, ..., p) included in φk. Consequently,

the estimates given by (13) are not consistent, too. This conclusion

is illustrated in simulation example.
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III. INSTRUMENTAL VARIABLES APPROACH

Let us assume that besides ΦN (see (10)) we have given, or we

can generate, additional matrix ΨN of instrumental variables, which

fulfills (even for correlated zk) the following conditions:

(C1): dimΨN = dim ΦN , and the elements of ΨN =
(ψ1, ψ2, ..., ψN )T , where ψk = (ψk,1, ψk,2, ..., ψk,m(n+1)+pq)

T ,

are commonly bounded, i.e., there exists 0 < ψmax < ∞ such that∣∣ψk,j∣∣ ≤ ψmax (k = 1...N , j = 1...m(n + 1) + pq) and ψk,j are

ergodic, not necessary zero-mean, processes (see Appendix IX-H)

(C2): there exists Plim( 1
N

ΨT
NΦN ) = Eψkφ

T
k and the limit is

not singular, i.e., det{EψkφTk } 6= 0
(C3): Plim( 1

N
ΨT
NZN ) = Eψkzk and Eψkzk = cov(ψk, zk) =

0 (see Assumption 4).

Lemma 1: The necessary condition for existence of the instru-

mental variables matrix ΨN , which fulfills (C2) is asymptotic non-

singularity of 1
N

ΦT
NΦN .

Proof: (for the proof see the Appendix VIII-B).

After left hand side multiplying of (10) by ΨT
N we get

ΨT
NYN = ΨT

NΦNθ + ΨT
NZN .

Taking into account conditions (C1)÷(C3) we propose to replace the

LS estimate, given by (11), and computed in stage 1 (see Section II)

with the instrumental variables estimate

θ̂
(IV )

N = (ΨT
NΦN )−1ΨT

NYN . (19)

Stage 2 is analogous, i.e., the SVD decomposition is made for the

estimates Θ̂
(IV )
Λd and Θ̂

(IV )
Γc of matrices ΘΛd and ΘΓc, obtained on

the basis of θ̂
(IV )

N .

IV. LIMIT PROPERTIES

For the algorithm (19) the estimation error of aggregated parameter

vector θ has the form

∆
(IV )
N = θ̂

(IV )

N − θ = (20)(
ΨT
NΦN

)−1

ΨT
NZN

=

(
1

N

N∑
k=1

ψkφ
T
k

)−1(
1

N

N∑
k=1

ψkzk

)
.

Theorem 2: Under (C1)÷(C3), the estimate (19) converges in

probability to the true parameters of the system, independently of

the autocorrelation of the noise, i.e.,

P lim
N→∞

∆
(IV )
N = 0. (21)

Proof: (for the proof see the Appendix VIII-C)

Theorem 3: The estimation error ∆
(IV )
N converges to zero with

the asymptotic rate O( 1√
N

) in probability (see e.g. Definition 4

in Appendix IX-D ), for each strategy of instrumental variables

generation, which guarantees fulfilment of (C1)÷(C3).

Proof: (for the proof see the Appendix VIII-D)

V. OPTIMAL INSTRUMENTAL VARIABLES

Theorem 3 gives universal guaranteed asymptotic rate of con-

vergence of the estimate (19). Nevertheless, for moderate number

of measurements, the error depends on particular instruments used

in application. In this Section, the optimal form of instruments is

established for the special case of NARMAX systems, which fulfils

the following assumption concerning η() and {λj}pj=1.

Assumption 7: The nonlinear characteristic η() is a Lipschitz

function, i.e., ∣∣∣η(y(1))− η(y(2))
∣∣∣ ≤ r ∣∣∣y(1) − y(2)

∣∣∣ , (22)

and

η(0) = 0. (23)

Moreover, the constant r > 0 is such that

α = r

p∑
j=1

|λj | < 1. (24)

Let us consider the following conditional processes (cf. (2))

Gl,k , E{gl(yk) | {ui}ki=−∞} (25)

where l = 1, 2, ...q and denote

ξl , gl(y)−Gl.

It holds that

gl(yk) = Gl,k + ξl,k,

and the signals

ξl,k = gl(yk)−Gl,k, (26)

for l = 1, 2, ...q, and k = 1, 2, ..., N , will be interpreted as the

"noises".

The equation (1) can be now presented as follows

yk =

p∑
j=1

λjη(yk−j) +

n∑
i=0

γiµ(uk−i) + zk = (27)

Ak
(
{yk−j}pj=1

)
+Bk

(
{uk−i}ni=1

)
+ Ck (uk) + zk,

where Ak
(
{yk−j}pj=1

)
=

∑p
j=1 λjη(yk−j), and

Bk
(
{uk−i}ni=1

)
=

∑n
i=1 γiµ(uk−i), Ck (uk) = γ0µ(uk).

The random variables Ak, Bk and zk are independent of the

input uk (see Assumptions 1-6). For a fixed uk = u we get

Ck (u) = γ0µ(u). The expectation in (25) has the following

interpretation

Gl,k = E{gl(Ck (uk) +Ak
(
{yk−j}pj=1

)
(28)

+Bk
(
{uk−i}ni=1

)
+ zk) | {ui}ki=−∞},

and cannot be computed explicitly. However, as it will be shown

further, the relation between Gl,k and the characteristics µ(), η() is

not needed. The most significant are the following properties.

Property (P1): The ”disturbances”
{
ξl,k
}N
k=1

given by (26) are

independent of the input process {uk} and are all ergodic (see

Appendix IX-H).

Mutual independence of
{
ξl,k
}N
k=1

and {uk}∞k=−∞ is a direct

consequence of definition (25). On the basis of Assumptions 3,

4 and 5 we conclude, that the output {yk}Nk=1 of the system is

bounded and ergodic. Thanks to Assumption (1), concerning the

nonlinear characteristics, the processes {gl (yk)}Nk=1 and {Gl,k}Nk=1

(l = 1, 2, ..., q) are also bounded and ergodic. Consequently, the

"noises"
{
ξl,k
}N
k=1

(l = 1, 2, ..., q), as the sums of ergodic processes,

are ergodic too (see (26)).

Property (P2): The processes
{
ξl,k
}

are zero-mean.

By definition (26) of ξl,k we simply have

Eξl,k = Egl(yk)−EGl,k =

= E{u}kj=−∞
E
{
gl(yk) | {u}ki=−∞

}
−

−E{u}kj=−∞
E
{
gl(yk) | {u}ki=−∞

}
= 0.

Property (P3): If the instrumental variables ψk,j are generated by

nonlinear filtration

ψk,j = Hj({ui}ki=−∞), (29)
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where the transformations Hj() (j = 1, 2, ...,m(n + 1) + pq)
guarantee the ergodicity of {ψk,j}, then all products ψk1,jξl,k2
(j = 1, 2, ...,m(n + 1) + pq, l = 1, 2, ..., q) are zero-mean, i.e.,

Eψk1,jξl,k2 = 0.

Owing to (P1) and (P2) we obtain

E
[
ψk1,jξl,k2

]
= E

[
Hj({ui}k1i=−∞)ξl,k2

]
=

= EHj({ui}k1i=−∞)Eξl,k2 = 0.

Property (P4): If the measurement noise zk and the instrumental

variables ψk,j are bounded (i.e. Assumption 4 and the condition (C1)

are fulfilled), i.e., |zk| < zmax < ∞ and
∣∣ψk,j∣∣ = |Hj (uk)| <

ψmax <∞ (see 3), then

1

N

N∑
k=1

ψkzk → Eψkzk (30)

with probability 1, as N →∞; (cf. condition (C3)).

The product sk,j = ψk,jzk of stationary and bounded signals ψk,j
and zk is also stationary, with finite variance (see assumptions of

Theorem 20). To prove (30), making use of Theorem 20 in Appendix

IX-H we must show, that rsk,j (τ)→ 0, as |τ | → ∞. Let us notice

that the autocovariance function of zk (Ezk = 0)

rz (τ) = E [(zk −Ez) (zk+τ −Ez)] = Ezkzk+τ , (31)

as the output of linear filter excited by a white noise has the property

that

rz (τ)→ 0 (32)

as |τ | → ∞. Hence, the process ψk,j = Hj
(
{ui}ki=−∞

)
is ergodic

(see (P3)), and independent of zk (see Assumption 4). Thus

rsk,j (τ) = E [(sk,j −Esk,j) (sk+τ,j −Esk,j)] = (33)

= E
[
ψk,jψk+τ,jzkzk+τ

]
= crz(τ),

where c =
(
Eψk,j

)2
is finite constant, 0 ≤ c <∞. Consequently

rsk,j (τ)→ 0 (34)

as |τ | → ∞ and

1

N

N∑
k=1

sk,j → Esk,j (35)

with probability 1, as N →∞.

Property (P5a): For the NARMAX system with the characteristic

η() as in Assumption 7 and the order of autoregression p = 1 (see

equation (1)) it holds that

1

N

N∑
k=1

ψkφ
T
k → Eψkφ

T
k , (36)

with probability 1 as N →∞, where ψk is given by (29); compare

the condition (C2).

For p = 1 (for clarity of presentation let also λ1 = 1) the system

is described by

yk = η (yk−1) +

n∑
i=0

γiµ (uk−i) + zk, (37)

and the nonlinearity η(), according to Assumption 7, fulfills the

condition

|η (y)| ≤ a |y| , (38)

where 0 < a < 1. Introducing the symbol

δk =

n∑
i=0

γiµ (uk−i) + zk, (39)

we get

yk = η (yk−1) + δk. (40)

Since the input {uk} is the i.i.d. sequence, independent of {zk}, and

the noise {zk} has the property that rz (τ) → 0, as |τ | → ∞ (see

(32)), we conclude that also rδ (τ)→ 0, as |τ | → ∞. The equation

(40) can be written in the following form

yk = δk + η {δk−1 + η [δk−2 + η (δk−3 + ...)]} . (41)

Let us introduce the coefficients ck defined, for k = 1, 2, ..., N , as

follows

ck =
η (yk)

yk
(42)

with 0
0

treated as 0. From (38) we have that

|ck| ≤ a < 1, (43)

and using ck, the equation (41) can be rewritten as follows

yk = δk + ck−1 (δk−1 + ck−2 (δk−2 + ck−3 (δk−3 + ...))) ,

i.e.,

yk =

∞∑
i=0

ck,iδk−i,

where ck,0 , 1, and ck,i = ck−1ck−2...ck−i. From (43) we conclude

that

|ck,i| < ai. (44)

Since for 0 < a < 1 the sum
∑∞
i=0 a

i is finite, from (44) we

get
∑∞
i=0 |ck,i| < ∞, and from (39) we simply conclude that for

|τ | → ∞ it holds that ry (τ) → 0 and rgl(yk) (τ) → 0, where the

processes gl(yk) (l = 1, ..., q) are elements of the vector φk. Thus,

for the system with the nonlinearity η() as in (38) the processes {yk}
and {gl(yk)} (l = 1, ..., q) fulfills assumption of the ergodic law of

large numbers (see Theorem 20), and the property (36) holds.

Property (P5b): Under Assumption 7, the convergence (36) takes

place also for the system (1) with p ≥ 1.

For any number sequence{xk} let us define the norm

‖{xk}‖ = lim
K→∞

sup
k>K
|xk| . (45)

and let us present the equation (1) in the form

yk =

p∑
j=1

λjη(yk−j) + δk (46)

where δk is given by (39).

The proof of property (P5b) (for p > 1) is based of the following

theorem (see [12], page. 53).

Theorem 4: Let {y(1)
k } and {y(2)

k } be two different output se-

quences of the system (1) (see also (46)), and {δ(1)
k }, {δ

(2)
k } be

respective aggregated inputs (see (39)). If (23), (22) and (24) are

fulfilled, then

1

1 + α

∥∥∥{δ(1)
k − δ

(2)
k }
∥∥∥ ≤ ∥∥∥{y(1)

k − y
(2)
k }

∥∥∥ ≤ 1

1− α

∥∥∥{δ(1)
k − δ

(2)
k }
∥∥∥ ,

(47)

where the norm ‖ ‖ is defined in (45).

From (47) and under conditions (23), (22), (24) the steady state of

the system (1) depends only on the steady state of the input {δk}. The

special case of (47) is δ
(2)
k ≡ 0, in which limK→∞ supk>K

∣∣∣y(2)
k

∣∣∣ =

0, and

1

1 + α

∥∥∥{δ(1)
k }
∥∥∥ ≤ ∥∥∥{y(1)

k }
∥∥∥ ≤ 1

1− α

∥∥∥{δ(1)
k }
∥∥∥ . (48)
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The impulse response of the system tends to zero, as k → ∞ and

for the i.i.d. input, the autocorrelation function of the output {yk} is

such that

ry(τ)→ 0, as |τ | → ∞.

Moreover, on the basis of (1)–(4) since the process {yk} is bounded,

it has finite moments of any orders and the ergotic theorems holds

(see Lemma 20 and Lemma 21 in Appendix IX-H). In consequence,

the convergence (36) holds.

The properties (P5a) and (P5b) (see (36), (9) and (29)) can be

rewritten for particular elements of ψk and φk in the following way

1

N

N∑
k=1

ψk1,jgl(yk2)→ Eψk1,jgl(yk2)

with probability 1, as N →∞.

Under the property that E
[
ψk1,jξl,k2

]
= 0 (see (P3)) for instru-

mental variables generated according to (29) we obtain

E
[
ψk1,jgl(yk2)

]
= E

[
ψk1,jGl,k2

]
.

Denoting (cf. (9))

Φ#
N = (φ#

1 , φ
#
2 , ..., φ

#
N )T (49)

φ#
k , (f1(uk), ..., fm(uk), ..., f1(uk−n), ..., fm(uk−n),

G1,k−1, ..., Gq,k−1, ..., G1,k−p, ..., Gq,k−p)
T

where Gl,k , E{gl(yk) | {ui}ki=−∞} (see (25)), and making use

of ergodicity of the processes {ψk,j} (j = 1, ...,m(n + 1) + pq),

{ft(uk)} (t = 1, ...,m) and {Gl,k} (l = 1, ..., q) (see (29) and

Assumption 3 ) we get

1

N
ΨT
NΦ#

N =
1

N

N∑
k=1

ψkφ
#T
k → Eψkφ

#T
k with p. 1

and using (36) we get

1

N
ΨT
NΦN =

1

N

N∑
k=1

ψkφ
T
k → Eψkφ

T
k with p. 1

for the instruments as in (29). Directly from definitions (25) and (49)

we conclude that E
[
ψk1,jgl(yk2)

]
= E

[
ψk1,jGl,k2

]
and

Eψkφ
#T
k = Eψkφ

T
k .

Thus, for any choice of instrumental variables matrix ΨN , which

fulfills the property (P3) (see (29)), the following equivalence takes

place asymptotically with probability 1, as N →∞
1

N
ΨT
NΦ#

N =
1

N
ΨT
NΦN . (50)

The estimation error (i.e., the difference between the estimate and

the true value of parameters) has the form

∆
(IV )
N = θ̂

(IV )

N − θ =

(
1

N
ΨT
NΦN

)−1(
1

N
ΨT
NZN

)
.

Introducing

ΓN ,
(

1

N
ΨT
NΦN

)−1
1√
N

ΨT
N

Z∗N ,
1√
N

ZN

zmax

where zmax upper bound of the absolute value of the noise (see

Assumption 4) we obtain

∆
(IV )
N = zmaxΓNZ∗N . (51)

with the Euclidean norm of Z∗N

‖Z∗N‖ =

√√√√ N∑
k=1

(
1√
N
zk

zmax

)2

=

√√√√ 1

N

N∑
k=1

(
zk
zmax

)2

≤ 1.

Let the quality of the instrumental variables be evaluated on the

basis of the following criterion (see e.g. [21])

Q (ΨN ) = max
‖Z∗N‖≤1

∥∥∥∆
(IV )
N (ΨN )

∥∥∥2

(52)

where ‖ ‖ denotes the Euclidean norm, and ∆
(IV )
N (ΨN ) is the

estimation error obtained for the instrumental variables ΨN .

Theorem 5: If the Assumptions 1–6, 7 and the condition (29) hold,

then the criterion Q (ΨN ) given by (52) attains minimum for the

choice

Ψ#
N = Φ#

N (53)

i.e., for each ΨN it holds that

lim
N→∞

Q(Ψ#
N ) 6 lim

N→∞
Q(ΨN ) with p. 1.

(for the proof see Appendix VIII-E)

Obviously,instrumental variables given by (53) fulfills postulates

(C1)÷(C3).

VI. NONPARAMETRIC GENERATION OF INSTRUMENTAL

VARIABLES

The optimal matrix of instruments Ψ#
N cannot be computed

analytically, because of the lack of prior knowledge of the system

(the probability density functions of excitations and the values of

parameters are unknown). Estimation of Ψ#
N is also difficult, because

the elements Gl,k depends on infinite number of measurements of the

input process. Therefore, we propose the following heuristic method

Ψ
(r)#
N = (ψ

(r)#
1 , ψ

(r)#
2 , ..., ψ

(r)#
N )T ,

ψ
(r)#
k , (f1(uk), ..., fm(uk), ..., f1(uk−n), ..., fm(uk−n),

G
(r)
1,k−1, ..., G

(r)
q,k−1, ..., G

(r)
1,k−p, ..., G

(r)
q,k−p)

T

where

G
(r)
l = G

(r)
l (u(0), ..., u(r)) , E{gl(yj) | uj = u(0), ..., uj−r = u(r)},(54)

G
(r)
l,k = G

(r)
l (uk, ..., uk−r).

It is based on the intuition that the approximate value Ψ
(r)#
N becomes

better, i.e.,

Ψ
(r)#
N

∼= Ψ#
N

when r grows (this question is treated as open). For r = 0 we have

ΨN = Ψ
(0)#
N ,

ψ
(0)#
k , (f1(uk), .., fm(uk), .., f1(uk−n), .., fm(uk−n),

R1(uk−1), .., Rq(uk−1), .., R1(uk−p), .., Rq(uk−p))
T

where

Rl(u) = G
(0)
l (u) = E{gl(yk)} | uk = u}. (55)

All elements of ψ
(0)#
k (white noises) fulfill (P3). After introducing

xl,k = gl(yk),

the regression functions in (55) can be written as

Rl(u) = E {xl,k | uk = u} .

Both uk and yk can be measured, and xl,k = gl(yk) can be

computed, because the functions gl() are known a priori. The most

natural method for generation of Ψ
(r)#
N is thus the kernel method.
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Traditional estimate of the regression function Rl(u) computed on

the basis of M pairs {(ui, xl,i)}Mi=1 has the form (see e.g. [4])

R̂l,M (u) =

1
M

∑M
i=1

(
xl,iK

(
u−ui
h(M)

))
1
M

∑M
i=1 K

(
u−ui
h(M)

) , (56)

where K() is a kernel function, and h() – the bandwidth parameter.

Further considerations will be based on the following two theo-

rems, proved in [4] and [6].

Theorem 6: If h(M)→ 0 and Mh(M)→∞ for M →∞, and

K(v) is one of exp(− |v|), exp(−v2), or 1

1+|v|1+δ , then

1
M

∑M
i=1

(
yiK

(
u−ui
h(M)

))
1
M

∑M
i=1 K

(
u−ui
h(M)

) → E{yi | ui = u} (57)

in probability as M → ∞, provided that {(ui, yi)}Mi=1 is an i.i.d.

sequence.

Theorem 7: If both the regression E{yi | ui = u}, and the input

probability density function ϑ(u) have finite second order derivatives,

then for h(M) = O(M−
1
5 ) the asymptotic rate of convergence is

O(M−
2
5 ) in probability.

To apply above theorems, let us additionally take the following

assumption.

Assumption 8: The functions g1(y),...,gq(y), f1(u),...,fm(u) and

the input probability density ϑ(u) have finite second order derivatives

for each u ∈ (−umax, umax) and each y ∈ (−ymax, ymax).

In our problem, the process {xl,i} appearing in the numerator

of (56) is correlated. Let us decompose the sums in numerator and

denominator in (56) for r =
⌊
M

1
χ(M)

⌋
partial sums, where χ(M)

is such that χ(M) → ∞ and r → ∞, as M → ∞ (e.g. χ(M) =√
logM ), i.e.

L({(ui, xl,i)}Mi=1) , 1

M

M∑
i=1

xl,iK

(
u− ui
h(M)

)
=

1

r

r∑
t=1

st(58)

W ({ui}Mi=1) , 1

M

M∑
i=1

K

(
u− ui
h(M)

)
=

1

r

r∑
t=1

wt

with

st =
1
M
r

∑
{i:0<ir+t≤M}

xl,ir+tK

(
u− uir+t
h(M)

)
, (59)

wt =
1
M
r

∑
{i:0<ir+t≤M}

K

(
u− uir+t
h(M)

)
.

The components of the sum (58) have the time distance r and become

uncorrelated as r → ∞. This fact is a simple consequence of the

property that rx(τ) → 0, as |τ | → ∞. Moreover, the components

in (59) are i.i.d. Each of the sub-sums {st} has the same probability

density, but uses different subset of measurements. All of them

includes M = M
r

data. For simplicity let us write

st =
1

M

∑
{i:0<ir+t≤M}

xl,ir+tK

(
u− uir+t
H(M)

)
(60)

wt =
1

M

∑
{i:0<ir+t≤M}

K

(
u− uir+t
H(M)

)
where H(M) , h(M). Let h(M) = cMα,where −1 < α < 0, then

H(M) = cMα = c

M 1− 1
χ(M)

1− 1
χ(M)


α

= c
(
M

α) 1

1− 1
χ(M) = O(M

α
)

(61)

and for M →∞, it holds that

H(M)→ 0 and MH(M)→∞. (62)

From (60), (61), (62) and Theorem 6, for r →∞ we get

P lim
M→∞

(
st
wt

)
=

P limM→∞ (st)

P limM→∞ (wt)
=
a(u)

b(u)
= Rl(u)

for each t = 1, 2, ..., r, and since

R̂l,M (u) =
L({(ui, xl,i)}Mi=1

W ({ui}Mi=1)
=

1
r

∑r
t=1 st

1
r

∑r
t=1 wt

,

we obtain that

P lim
M→∞

(
R̂l,M (u)

)
= Rl(u). (63)

Under Assumption 8, from the property (61) and Theorem 7 we

conclude that for h(M) = cM−
1
5 the rate of convergence of (56) is

O(M−
2
5 ) in probability.

VII. THE 3-STAGE IDENTIFICATION

Taking into account the conclusions from Section VI, in particular

the form of optimal instruments Ψ∗N , we propose the following

identification procedure.

Stage 1 (nonparametric): Using M + max(n, p) measurements

{(ui, yi)}Mi=1−max(n,p) generate empirical matrix of instruments

Ψ̂∗N,M = (ψ̂
∗
1,M , ψ̂

∗
2,M , ...ψ̂

∗
N,M )T , where

ψ̂
∗
k,M = (f1(uk), ..., fm(uk), ..., f1(uk−n), ... (64)

..., fm(uk−n), R̂1,M (uk−1), ......,

R̂q,M (uk−1), ..., R̂1,M (uk−p), ..., R̂q,M (uk−p))
T

and R̂l,M (u) =
∑M
i=1

(
gl(yi)K(u−ui

h(M)
)
)
/
∑M
i=1 K(u−ui

h(M)
).

Stage 2 (parametric): Estimate the aggregated parameter vector (8)

θ = (γ0c1, ..., γocm, .., γnc1, ..., γncm,

λ1d1, ..., λ1dq, ..., λpd1, ..., λpdq)
T

by the instrumental variables method

θ̂
∗(IV )

N,M =
(

Ψ̂∗TN,MΦN
)−1

Ψ̂∗TN,MYN (65)

where YN = (y1, y2, ..., yN )T , ΦN = (φ1, φ2, ..., φN )T ,
φk = (f1(uk), ..., fm(uk), ..., f1(uk−n), ..., fm(uk−n),
g1(yk−1), ..., gq(yk−1), ..., g1(yk−p), ..., gq(yk−p))

T , (see (9)),

and next, using θ̂
∗(IV )

N,M construct the estimates Θ̂
(IV )
λd and Θ̂

(IV )
γc of

the matrices Θλd = ΛdT and Θγc = ΓcT .

Stage 3 (decomposition): Compute the SVD (singular value de-

composition) of the matrices Θ̂
(IV )
λd and Θ̂

(IV )
γc , i.e., Θ̂

(IV )
γc =∑min(n,m)

i=1 σiµ̂iν̂
T
i , Θ̂

(IV )
λd =

∑min(p,q)
i=1 δiξ̂iζ̂

T

i to obtain the es-

timates of the parameters (elements of the impulse responses of

the linear dynamic blocks and the parameters of static nonlinear

characteristics)

Λ̂N = sgn(ξ̂1[κξ1 ])ξ̂1 Γ̂N = sgn(µ̂1[κµ1 ])µ̂1 (66)

ĉN = sgn(µ̂1[κµ1 ])σ1ν̂1 d̂N = sgn(ξ̂1[κξ1 ])δ1ζ̂1

where x[k] denotes k-th element of the vector x, and κx = min{k :
x[k] 6= 0}.

Under condition (63) the following theorem holds.

Theorem 8: For the NARMAX system with the characteristic η(y)
as in Assumption 7 it holds that

θ̂
∗(IV )

N,M → θ, in probability

as M → ∞ and N → ∞, provided that h(M) fulfills assumptions

of Theorem 6.

(for the proof – see the Appendix VIII-F)
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VIII. PROOFS OF THEOREMS AND LEMMAS

A. Hammerstein system as a special case of NARMAX system

Lemma 9: The additive NARMAX system with the linear function

η(yk), i.e., of the form η(yk) = dyk, is equivalent to the Hammer-

stein system.

Proof: The NARMAX system description

yk =

p∑
j=1

ajη(yk−j) +

n∑
i=0

biµ(uk−i) + vk,

for η(yk) = dyk and the ’input’

xk ,
n∑
i=0

biµ(uk−i) + vk, (67)

resembles the difference equation of AR linear model

yk =

p∑
j=1

ajdyk−j + xk,

which can be presented equivalently as ([8])

yk =

∞∑
l=0

rlxk−l. (68)

Inserting (67) to (68) we obtain that

yk =

∞∑
l=0

rl

(
n∑
i=0

biµ(uk−i−l) + vk−l

)
,

and further

yk =

∞∑
q=0

γqµ(uk−q) + zk, (69)

where zk =
∑∞
l=0 rlvk−l, γq =

∑∞
l=0

∑n
i=0 rlbiδ(l+i−q), and δ()

is a discrete impulse. Equation (69) represents Hammerstein system

with infinite impulse response.

B. The necessary condition for the 3-Stage algorithm

Lemma 10: If det(BTA) 6= 0, for a given matrices

A,B ∈ Rα×β with finite elements, then det(ATA) 6= 0.

Proof: Let det(ATA) = 0, i.e., rank(ATA) < β. From the

obvious property that

rank(ATA) = rank(A)

we conclude that one can find the non-zero vector ξ ∈ Rβ , such that

Aξ = 0. Multiplying this equation by BT we get BTAξ = 0, and

hence det(BTA) = 0.

For A = 1√
N

ΦN and B = 1√
N

ΨN we conclude that the neces-

sary condition for 1
N

ΨT
NΦN to be of full rank is det( 1

N
ΦT
NΦN ) 6=

0, i.e., persistent excitation of {φk}.

C. Proof of Theorem 2

Proof: From the Slutzky theorem (cf. [3] and Appendix IX-E)

we have

P lim
N→∞

(∆
(IV )
N ) =(
P lim
N→∞

(
1

N
ΨT
NΦN

))−1

P lim
N→∞

(
1

N
ΨT
NZN

)
,

and directly from the conditions (C2) and (C3) it holds that

P lim
N→∞

(
∆

(IV )
N

)
= 0. (70)

D. Proof of theorem 3

Proof: Let us define the scalar random variable

ξN =
∥∥∥∆

(IV )
N

∥∥∥ =
∥∥∥θ̂(IV )

N − θ
∥∥∥

where ‖ ‖ denotes any vector norm. We must show that

P

{
rN

ξN
aN

> ε

}
→ 0, as N →∞,

for each ε > 0, each rN → 0 and aN = 1√
N

(see Definition 4).

Using Lemma 15, to prove that ξN = O( 1√
N

) in probability, we

show that ξN = O( 1
N

) in the mean square sense. Introducing

AN =
1

N
ΨT
NΦN =

1

N

N∑
k=1

ψkφ
T
k ,

BN =
1

N
ΨT
NZN =

1

N

N∑
k=1

ψkzk,

we obtain that

∆
(IV )
N = A−1

N BN . (71)

Under Assumptions 1–6 we conclude that the system output yk is

bounded, i.e., |yk| < ymax <∞. Moreover, under condition (C1), it

holds that ∣∣∣Ai,j
N

∣∣∣ ≤ ψmaxpmax <∞,

for j = 1, 2, ...,m(n+ 1), and∣∣∣Ai,j
N

∣∣∣ ≤ ψmaxpmax <∞,

for j = m(n + 1) + 1, ...,m(n + 1) + pq, so each element of AN

is bounded. Similarly, one can show boundedness of elements of the

vector BN . The norm of the error error ∆
(IV )
N given by (71) can be

evaluated as follows

ξN =
∥∥∥∆

(IV )
N

∥∥∥ =

∥∥∥∥∥
(

1

N
ΨT
NΦN

)−1(
1

N
ΨT
NZN

)∥∥∥∥∥
≤

∥∥∥∥∥
(

1

N
ΨT
NΦN

)−1
∥∥∥∥∥
∥∥∥∥ 1

N
ΨT
NZN

∥∥∥∥ ≤
≤ c

∥∥∥∥ 1

N
ΨT
NZN

∥∥∥∥ = c

∥∥∥∥∥ 1

N

N∑
k=1

ψkzk

∥∥∥∥∥
where c is some positive constant. Obviously, one can find α ≥ 0
such that

c

∥∥∥∥∥ 1

N

N∑
k=1

ψkzk

∥∥∥∥∥ ≤ αc
dimψk∑
i=1

(
1

N

∣∣∣∣∣
N∑
k=1

ψk,izk

∣∣∣∣∣
)

.

and hence

ξ2
N =

∥∥∥∆
(IV )
N

∥∥∥2

≤ α2c2

dimψk∑
i=1

(
1

N

∣∣∣∣∣
N∑
k=1

ψk,izk

∣∣∣∣∣
)2

≤ α2c2 dimψk

dimψk∑
i=1

(
1

N

∣∣∣∣∣
N∑
k=1

ψk,izk

∣∣∣∣∣
)2

= α2c2 dimψk

dimψk∑
i=1

1

N2

(
N∑
k=1

ψk,izk

)2

.
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Moreover, for uncorrelated processes{ψk} and {zk} (see condition

(C3)) we have

Eξ2
N ≤ α

2c2 dimψk

dimψk∑
i=1

1

N2
E

(
N∑
k=1

ψk,izk

)2

=

= α2c2 dimψk

dimψk∑
i=1

1

N2
E

 N∑
k1=1

N∑
k2=1

ψk1,iψk2,izk1zk2

 ≤
≤ α2c2 dimψk

dimψk∑
i=1

1

N2

N∑
k1=1

N∑
k2=1

∣∣E [ψk1,iψk2,i]∣∣ |E [zk1zk2 ]| ≤

≤ α2c2 (dimψk)2 ψ
2
max

N

[
|rz(0)|+ 2

N∑
τ=1

(
1− τ

N

)
|rz(τ)|

]

≤ C

N

∞∑
τ=0

|rz(τ)| ,

where

rz(τ) = varε

∞∑
i=0

ωiωi+τ ,

C = 2α2c2 (dimψk)2 ψ2
max.

Since∣∣∣∣∣varε
∞∑
τ=0

∞∑
i=0

ωiωi+τ

∣∣∣∣∣ ≤ varε
∞∑
τ=0

∞∑
i=0

|ωi| |ωi+τ |

≤ varε
∞∑
i=0

|ωi|
∞∑
i=0

|ωi+τ | <∞,

we conclude that

Eξ2
N ≤ D

1

N

where D = Cvarε
∣∣∑∞

τ=0

∑∞
i=0 ωiωi+τ

∣∣.
E. Proof of theorem 5

Proof: To simplify presentation let zmax = 1. From (51) we get∥∥∥∆
(IV )
N (ΨN )

∥∥∥2

= ∆
(IV )T
N (ΨN )∆

(IV )
N (ΨN ) = Z∗TN ΓTNΓNZ∗N ,

and the maximum value of cumulated error is

Q(ΨN ) = max
‖Z∗N‖≤1

(
∆

(IV )T
N (ΨN )∆

(IV )
N (ΨN )

)
= max
‖Z∗N‖≤1

〈
Z∗N ,Γ

T
NΓNZ∗N

〉
=

= ‖ΓN‖2 = λmax

(
ΓTNΓN

)
,

where ‖ ‖ is the spectral matrix norm induced by the Euclidean vector

norm, and λmax() denotes the biggest eigenvalue of the matrix. Since

[17],[21]

λmax

(
ΓTNΓN

)
= λmax

(
ΓNΓTN

)
,

from definition of ΓN we conclude that

max
‖Z∗N‖≤1

(
∆

(IV )T
N (ΨN )∆

(IV )
N (ΨN )

)
= max
‖ζ‖≤1

〈
ζ,ΓNΓTNζ

〉
= max
‖ζ‖≤1

〈
ζ,

(
1

N
ΨT
NΦN

)−1(
1

N
ΨT
NΨN

)(
1

N
ΦT
NΨN

)−1

ζ

〉
.

On the basis of (50), it holds that

max
‖Z∗N‖≤1

(
∆

(IV )T
N (ΨN )∆

(IV )
N (ΨN )

)
= max
‖ζ‖≤1

〈
ζ,

(
1

N
ΨT
NΦ#

N

)−1(
1

N
ΨT
NΨN

)(
1

N
Φ#T
N ΨN

)−1

ζ

〉
,

with probability 1, as N → ∞, where ΦN and Φ#
N are given by

(9) and (49), respectively. Using Lemma 13 for M1 = 1√
N

Φ#
N and

M2 = 1√
N

ΨN we get

ζTΓNΓTNζ ≥ ζT
(

1

N
Φ#T
N Φ#

N

)−1

ζ

for each vector ζ, and consequently

Q (ΨN ) = max
‖ζ‖≤1

(
ζTΓNΓTNζ

)
≥ max
‖ζ‖≤1

(
ζT
(

1

N
Φ#T
N Φ#

N

)−1

ζ

)
.

For ΨN = Φ#
N , it holds that

max
‖ζ‖≤1

(
ζTΓNΓTNζ

)
= max
‖ζ‖≤1

(
ζT
(

1

N
Φ#T
N Φ#

N

)−1

ζ

)
and the criterion Q (ΨN ) attains minimum. The choice ΨN = Φ#

N

is thus asymptotically optimal.

F. Proof of theorem 8

Proof: The estimation error (65) can be decomposed as follows

∆
(IV )
N,M = θ̂

∗(IV )

N,M − θ = θ̂
∗(IV )

N,M − θ̂
∗(IV )

N + θ̂
∗(IV )

N − θ,

where θ̂
∗(IV )

N =
(
Ψ∗TN ΦN

)−1
Ψ∗TN YN , and Ψ∗N is defined by (53)

and (49). From the triangle inequality, for each norm ‖ ‖ it holds

that ∥∥∥∆
(IV )
N,M

∥∥∥ ≤ ∥∥∥θ̂∗(IV )

N,M − θ̂
∗(IV )

N

∥∥∥+
∥∥∥θ̂∗(IV )

N − θ
∥∥∥ . (72)

On the basis of Theorem 2∥∥∥θ̂∗(IV )

N − θ
∥∥∥→ 0 in probability

as N → ∞. To prove 8, let us analyze the component∥∥∥θ̂∗(IV )

N,M − θ̂
∗(IV )

N

∥∥∥ in (72) to show that, for fixed N , it tends to zero

in probability, as M →∞. let us denote (cf. [9], page. 116-117)

εN ,
1∥∥ 1

N
Ψ∗TN ΦN

∥∥ (N – fixed).

From (63) we have that∥∥∥∥( 1

N
Ψ̂∗TN,MΦN

)
−
(

1

N
Ψ∗TN ΦN

)∥∥∥∥→ 0 in probability

as M →∞, and particularly

lim
M→∞

P

{∥∥∥∥( 1

N
Ψ̂∗TN,MΦN

)
−
(

1

N
Ψ∗TN ΦN

)∥∥∥∥ < εN

}
= 1.

Introducing

rM ,

∥∥∥( 1
N

Ψ̂∗TN,MΦN
)
−
(

1
N

Ψ∗TN ΦN
)∥∥∥

εN
(
εN −

∥∥∥( 1
N

Ψ̂∗TN,MΦN
)
−
(

1
N

Ψ∗TN ΦN
)∥∥∥)

and using Banach Theorem (see [12], Theorem 5.8., page. 106) we

get

lim
M→∞

P

{∥∥∥∥∥
(

1

N
Ψ̂∗TN,MΦN

)−1

−
(

1

N
Ψ∗TN ΦN

)−1
∥∥∥∥∥ ≤ rM

}
= 1.
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Since rM → 0 in probability as M →∞, we finally conclude that∥∥∥θ̂∗(IV )

N,M − θ̂
∗(IV )

N

∥∥∥→ 0 in probability,

as M →∞, for each N .

IX. ALGEBRA TOOLBOX

A. SVD decomposition

Theorem 11: [10] For each A ∈ Rm,n it exists the unitary

matrices U ∈ Rm,m, and V ∈ Rn,n, such that

UTAV = Σ = diag(σ1, ..., σl), (73)

where l = min(m,n), and

σ1 ≥ σ2 ≥ ... ≥ σr > 0

σr+1 = ... = σl = 0

where r = rank(A).

The numbers σ1, ..., σl are called the singular values of the matrix

A. Solving (73) with respect to A we obtain

A = UΣVT =

r∑
i=1

uiσiv
T
i =

r∑
i=1

σiuiv
T
i , (74)

where ui and vi denote i-th columns of U and V, respectively [10].

B. Factorization theorem

Theorem 12: [17] Each positive definite matrix M can be shown

in the form

M = PPT

where P (root of M) is nonsingular.

C. Technical lemma

Lemma 13: (for the proof see [21]) let M1 and M2 be two

matrices with the same dimensions. If
(
MT

1 M1

)−1
,
(
MT

1 M2

)−1

and
(
MT

2 M1

)−1
exist, then

DN =
(
MT

2 M1

)−1

MT
2 M2

(
MT

1 M2

)−1

−
(
MT

1 M1

)−1

jest is nonnegative definite, i.e., for each ζ it holds that

ζTDNζ ≥ 0.

D. Types of convergence of random sequences

Definition 1: [3]The sequence of random variables {κk} con-

verges, for k →∞, with probability 1 (strongly) to κ∗, if

P ( lim
k→∞

κk = κ∗) = 1.

Definition 2: [3]The sequence of random variables {κk} con-

verges, for k →∞, in probability (weakly) to κ#, if

lim
k→∞

P (
∣∣∣κk − κ#

∣∣∣ > ε) = 0,

for each ε > 0. The κ# is denoted as a probabilistic limit of κk

Plimk→∞κk = κ#
. (75)

Lemma 14: If κk → κ with probability 1, as k →∞, then κk →
κ in probability, as k →∞.

Definition 3: [3] The sequence of random variables {κk} con-

verges, for k →∞, in the mean square sense to κ∗, if

lim
k→∞

E(κk − κ∗)2 = 0.

Definition 4: [5] The sequence of random variables {κk} has the

rate of convergence O(ek) in probability as k →∞, where {ek} is

deterministic number sequence which tends to zero, i.e.,

κk = O(ek) in probability,

if
{
κk
ek
χk

}
→ 0 in probability for each number sequence {χk}, such

that limk→∞ χk = 0.

Definition 5: [5] The sequence of random variables {κk} has the

rate of convergence O(ek) in the mean square sense, as k →∞, if

it exists the constant 0 ≤ c <∞, such that

Eκ2
k ≤ cek.

Lemma 15: [5] If κk = O(ek) in the mean square sense, then

κk = O(
√
ek) in probability.

E. Slutzky theorem

Theorem 16: ([17]) If Plimk→∞κk = κ# and the function g() is

continuous, then

P lim
k→∞

g(κk) = g(κ#).

F. Chebychev’s inequality

Lemma 17: ([3], page 106) For each constant c, each random

variable X and each ε > 0 it holds that

P {|X − c| > ε} ≤ 1

ε2
E (X − c)2

.

In particular, for c = EX

P {|X −EX| > ε} ≤ 1

ε2
varX .

G. Persistent excitation

Definition 6: ([20]) The stationary random process {αk} is

strongly persistently exciting of orders n×m, (denote SPE(n,m))

if the matrix

Rκ(n,m) = E

 κk
:

κk−n+1

 κk
:

κk−n+1

T

where κk =
[
αk α2

k .. αmk
]T

, is of full rank.

Lemma 18: ([20]) The i.i.d. process {αk} is SPE(n,m) for each

n and m.

Lemma 19: ([20]) Let xk = H(q−1)uk, H(q−1) be asymptoti-

cally stable linear filter, and {uk} be a random sequence with finite

variance. If the frequency function of {uk} is strictly positive in at

least m+ 1 distinct points, then {xk} is SPE(n,m) for each n.

H. Ergodic processes

Definition 7: ([19]) The stationary stochastic process {κk} is

ergodic with respect to the first and the second order moments if

1

N

N∑
k=1

κk → Eκk

1

N

N∑
k=1

κkκk+τ → Eκkκk+τ

with probability 1, as N →∞.

Theorem 20: (see [16], or [19]) Let us assume that {κk} is a

discrete-time random process with finite variance. If the autocorrela-

tion of {κk} is such that rκ(τ)→ 0 for |τ | → ∞, then

1

N

N∑
k=1

κk → Eκ (76)
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with probability 1, as N →∞.
Theorem 21: (cf. [16], or [19]) If the two random processes

{κ1,k} and {κ2,k} have finite fourth order moments and rκ1(τ)→
0, rκ2(τ)→ 0 as |τ | → ∞, then

1

N

N∑
k=1

κ1,kκ2,k → Eκ1,kκ2,k

with probability 1, as N −→∞.

I. Modified triangle inequality

Lemma 22: [3] If X and Y are k-dimensional random vectors,

then P [‖X + Y ‖ > ε] 6 P
[
‖X‖ > ε

2

]
+ P

[
‖Y ‖ > ε

2

]
for each

vector norm ‖•‖ and each ε > 0.
Proof: Let us define the following random events: A:

‖X + Y ‖ > ε, B: ‖X‖ + ‖Y ‖ > ε, C: ‖X‖ > ε
2

, D: ‖Y ‖ > ε
2

.

Obviously A =⇒ B and B =⇒ (C ` D). Thus A ⊂ B ⊂ (C ` D)
and P (A) 6 P (B) 6 P (C ` D) 6 P (C) + P (D).
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