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Relevant structures:

Hammerstein model

Wiener model

Cascade structures

Context of block-oriented models

Fundamental blocks:

Linear dynamic (L/LD)

Nonlinear static (N/NS)

Elementary identification methods:

Least squares method

Kernel estimates



Statement of the problem

𝑦𝑘 = 𝜂 
𝑗=0

𝑞

𝛾𝑗
∗𝜇(𝑢𝑘−𝑗 , 𝑎

∗), 𝑏∗ + 𝑧𝑘

SISO Hammerstein-Wiener (N-L-N) system

𝑦𝑘 = 𝑣𝑘 + 𝑧𝑘,

𝑣𝑘 = 𝜂 𝑥𝑘 ,

𝑥𝑘 = σ𝑗=0
𝑞

𝛾𝑗
∗𝑤𝑘−𝑗,

𝑤𝑘 = 𝜇 𝑢𝑘



Statement of the problem

𝜇 𝑢 = 𝜇 𝑢, 𝑎∗ = 𝑎1
∗𝑓1 𝑢 + 𝑎2

∗𝑓2 𝑢 +⋯+ 𝑎𝑚
∗ 𝑓𝑚(𝑢),

𝑎∗ = 𝑎1
∗ , 𝑎2

∗ , … , 𝑎𝑚
∗ 𝑇 , 𝑎∗ ∈ ℝ𝑚,

𝜂 𝑥 = 𝜂 𝑥, 𝑏∗ = 𝑏1
∗𝑔1 𝑥 + 𝑏2

∗𝑔2 𝑥 +⋯+ 𝑏𝑛
∗𝑔𝑛(𝑥),

𝑏∗ = 𝑏1
∗, 𝑏2

∗, … , 𝑏𝑛
∗ 𝑇 , 𝑏∗ ∈ ℝ𝑛

SISO Hammerstein-Wiener (N-L-N) system



Regarding the system:
▪ Linear dynamic block is a FIR filter of known order q.

▪ Static nonlinear characteristics are Lipschitz functions described by the 
combination of a priori known base functions 𝑓 and 𝑔. Characteristic 𝜂 ∙
is strictly monotonous.

Concerning input and noise signals:

▪ 𝑢𝑘
1

is an i.i.d. random process with Lipschitz probability density
function 𝑓, and 𝑓 0 > 0.

▪ 𝑢𝑘
2

is an i.i.d. random and binary process.

▪ Input and noise signals are mutually independent and have finite
variances. Expected value of noise signal equals zero.

General assumptions



Purpose of identification

𝑦𝑘 = 𝑦𝑘 𝛾∗, 𝑎∗, 𝑏∗

ത𝑦𝑘 = ത𝑦𝑘 𝛾, 𝑎, 𝑏

𝑄 𝛾, 𝑎, 𝑏 = 𝐸 𝑦𝑘 − ത𝑦𝑘
2 → min

𝛾,𝑎,𝑏
,



The algorithm

Stages

• Recovery of the finite impulse
response 𝛾∗

• Estimation of second nonlinear
characteristic (parameters 𝑏∗)

• Creation of additional signal 𝑟𝑘
with the same expected value as 
inaccessible signal 𝑥𝑘

• Identification of first nonlinear
characteristic (parameters 𝑎∗)

Methods

• Kernel-censored least squares
estimate

• Kernel-based method with the 
help of binary sequences

• Usage of reversed function
𝜂−1 ∙ and probability density
function 𝑓(𝑧)

• Least squares method as in 
Hammerstein system 
identification



Identification of linear block

𝛾 = 
𝑘=1

𝑁

𝜙𝑘𝜙𝑘
𝑇𝐾

Δ𝑘
ℎ1

−1

∙ 
𝑘=1

𝑁

𝜙𝑘𝑦𝑘𝐾
Δ𝑘
ℎ1

𝜙𝑘 = 𝑢𝑘 , 𝑢𝑘−1, … , 𝑢𝑘−𝑞
𝑇

Δ𝑘 = 𝜙𝑘 ∞ = max
𝑗=0,1,…,𝑞

|𝑢𝑘−𝑗|

𝐾
Δ𝑘
ℎ1

= ቊ
1, 𝑎𝑠 Δ𝑘 ≤ ℎ1,
0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒.



Identification of linear block

Theorem 1: 

Let given assumptions be in force. Then, for the
Hammerstein-Wiener system and h~𝑁−𝛼 , where

𝛼 ∈ 0,
1

𝑑
and 𝑑 = 𝑞 + 3, it holds that

ො𝛾𝑗 → 𝛾𝑗
∗, 𝑗 = 0, 1, … , 𝑞

in probability as 𝑁 → ∞, provided that 𝑐 =
𝜇′ 𝑢0 𝜂′ 𝑥0 ≠ 0.



Identification of linear block

Proof (sketch):
Let’s take Taylor series expansion and apply it to 
input and output nonlinearities around points 𝑢0 and 
𝑥0:

𝜇 𝑢𝑘 = 𝜇 𝑢0 + 𝑐1 𝑢𝑘 − 𝑢0 + 𝜌 𝑢𝑘 ,
𝜂 𝑥𝑘 = 𝜂 𝑥0 + 𝑐2 𝑥𝑘 − 𝑥0 + 𝜉(𝑥𝑘),

where 𝑐1 = 𝜇′ 𝑢0 , 𝑐2 = 𝜂′ 𝑥0 .
Observations:
𝜌 𝑢𝑘 , 𝜉(𝑥𝑘) are second order Taylor’s rests and:

𝜌 𝑢𝑘 = 𝑜 ℎ ,
𝜉 𝑥𝑘 = 𝑜 ℎ .



Estimation of second nonlinear
characteristic

Binary representation of number 𝑖 − 1, 𝑖 = 1, 2,… ,𝑁0, 𝑁0 = 2𝑞+1

𝑑1 = 0,0,… , 0,0,0 𝑇,

𝑑2 = 0,0,… , 0,0,1 𝑇,

𝑑3 = 0,0,… , 0,1,0 𝑇,
⋮

𝑑𝑁0 = 1, 1,… , 1, 1, 1 𝑇.

𝑥 𝑖 = 𝑑𝑖
𝑇𝛾∗

𝑥 1 , 𝑥 2 , … , 𝑥 𝑖 , … , 𝑥 𝑁0



Estimation of second nonlinear
characteristic

Ƹ𝜂 𝑥 𝑖 =
σ𝑘=1
𝑁 𝑦𝑘𝛿 𝜙𝑘 , 𝑑𝑖
σ𝑘=1
𝑁 𝛿 𝜙𝑘 , 𝑑𝑖

𝛿 𝜙𝑘 , 𝑑𝑖 = ቊ
1, 𝑎𝑠 𝜙𝑘 = 𝑑𝑖
0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

𝑃 𝛿 𝜙𝑘 , 𝑑𝑖 = 1 =
1

𝑁0
=

1

2𝑞+1



Estimation of second nonlinear
characteristic

𝑆 𝑥 𝑖 ≜ 𝑦𝑘 | 𝜙𝑘 == 𝑑𝑖

Ƹ𝜂 𝑥 𝑖 = 𝐴𝑣𝑔 𝑆 𝑥 𝑖 =

1

𝐿


𝑙=1

𝐿

𝑦 𝑙 , if 𝐿 > 0

0, otherwise

𝑦 1 , 𝑦 2 , … , 𝑦 𝐿 , 𝐿 − random



Estimation of second nonlinear
characteristic

Theorem 2: 

Under give assumptions, it holds that

𝐸 𝜂 𝑥 𝑖 − Ƹ𝜂 𝑥 𝑖
2
→ 0, as 𝑁 → ∞,

in each estimation point 𝑥 𝑖 = 𝑑𝑖
𝑇𝛾∗,

𝑖 = 1,2, … , 𝑁0, such that 𝑥 𝑖 ∈ 𝑐𝑜𝑛𝑡 𝜂 , 𝑔 , 

where 𝑐𝑜𝑛𝑡 𝜂 , 𝑔 is a set of all point of 

continuity of 𝜂( ) and 𝑔( ).



Estimation of second nonlinear
characteristic

Proof (sketch):
Using Wald identity and second form of the 
estimation function:

𝐸 Ƹ𝜂 𝑥 𝑖 = 𝜂 𝑥 𝑖 + 𝐸
σ𝑘=1
𝑁 𝑧𝑘 ∙ 𝛿 𝜙𝑘 , 𝑑𝑖
σ𝑘=1
𝑁 𝛿 𝜙𝑘 , 𝑑𝑖

= 𝜂 𝑥 𝑖 +
𝐸𝐿 ∙ 𝐸𝑧1

𝐸𝐿

𝐸𝐿 = 𝑃 𝜙𝑘 = 𝑑𝑖 ∙ 𝑁 =
1

𝑁0
∙ 𝑁 =

𝑁

2𝑞+1

and benefitting from conditional variances:

𝑣𝑎𝑟 Ƹ𝜂 𝑥 𝑖 =
𝑘=1

𝑁

𝑃 𝐿 = 𝑘 ∙
𝜎𝑧
2

𝑘
=
𝑁0𝜎𝑧

2

𝑁
= 𝑐 ∙

1

𝑁
~𝑁−1



Estimation of second nonlinear
characteristic

𝑥 𝑖 , Ƹ𝜂 𝑥 𝑖
𝑖=1

𝑁0

𝑏 = Ψ𝑇Ψ −1 ∙ Ψ𝑇𝜁

Ψ = 𝜓1
𝑇 , 𝜓2

𝑇 , … , 𝜓𝑁0
𝑇 𝑇

𝜓𝑖 = 𝑔1 𝑥 𝑖 , 𝑔2 𝑥 𝑖 , … , 𝑔𝑛 𝑥 𝑖

𝑇

𝜁 = Ƹ𝜂 𝑥 1 , Ƹ𝜂 𝑥 2 , … , Ƹ𝜂 𝑥 𝑁0

𝑇



Output signal filtration

𝑦𝑘 = 𝜂 𝑥𝑘 + 𝑧𝑘

𝑥𝑘 = 𝜂−1 𝑦𝑘 − 𝑧𝑘

𝑟𝑘 = 𝜍 𝑦𝑘

𝜍 𝑦 = 𝐸 𝑥𝑘|𝑦𝑘 = 𝑦 = ∞−
∞

𝜂−1 𝑦 − 𝑧 𝑓 𝑧 𝑑𝑧

𝐸𝑟𝑘 = 𝐸𝜍 𝑦𝑘 = 𝐸 ∞−
∞

𝜂−1 𝑦𝑘 − 𝑧 𝑓 𝑧 𝑑𝑧 =

= 𝐸 ∞−
∞

𝜂−1 𝜂(𝑥𝑘) 𝑓 𝑧 𝑑𝑧 =𝐸𝑥𝑘 ∙

∞−
∞

𝑓 𝑧 𝑑𝑧 = 𝐸𝑥𝑘



Identification of first nonlinear
characteristic

𝑥𝑘 = 𝜙𝑘
𝑇 ∙ 𝜃∗

= ቀ

ቁ

𝑓1 𝑢𝑘 , … , 𝑓𝑚 𝑢𝑘 , 𝑓1 𝑢𝑘−1 , … ,

𝑓𝑚 𝑢𝑘−1 , … , 𝑓1 𝑢𝑘−𝑞 , … , 𝑓𝑚 𝑢𝑘−𝑞
𝑇

𝜃∗ = 𝛾0
∗𝑎1

∗ , … , 𝛾0
∗𝑎𝑚

∗ , 𝛾1
∗𝑎1

∗ , … , 𝛾1
∗𝑎𝑚

∗ , … , 𝛾𝑞
∗𝑎1

∗ , … , 𝛾𝑞
∗𝑎𝑚

∗ 𝑇

𝜃 = Λ𝑁
𝑇 Λ𝑁

−1 ∙ Λ𝑁
𝑇 𝑅𝑁

𝜆𝑘



Numerical example

𝑁 = 105

𝑢𝑘
1
~𝑈 −1,1

𝑢𝑘
2
~𝐵(0,1)

𝑧𝑘~𝑈[−0.5,0.5]

𝛾∗ = 0.6 0.3 0.1 𝑇

𝑎∗ = 0.8 0.2 𝑇

𝑏∗ = 0.7 0.4 𝑇

𝜇 𝑢 = 𝑎1
∗𝑢 + 𝑎2

∗𝑢2

𝜂 𝑥 = 𝑏1
∗𝑥 + 𝑏2

∗𝑥2



Estimation of parameters 𝒂∗

𝐸𝛾 =
1

𝑞 + 1


𝑖=0

𝑞

𝛾𝑖
∗ − ො𝛾𝑖

2 = 1.38 ∙ 10−4

𝛾∗ = 0.6 0.3 0.1 𝑇

ො𝛾 = 0.613 0.302 0.085 𝑇

ℎ = 0.66



Estimation of parameters 𝒃∗



Estimation of parameters 𝒃∗

𝑏∗ = 0.7 0.4 𝑇

𝑏 = 0.699 0.401 𝑇

𝐸𝑏 =
1

2


𝑖=1

2

𝑏𝑖
∗ − 𝑏𝑖

2
= 1.1 ∙ 10−6



Kernel estimation of 𝒇(𝒛)

𝑓 𝑧 =
1

𝑁ℎ


𝑘=1

𝑁

𝐾
𝑧𝑘 − 𝑧

ℎ



Output signal filtration

1) Fast Fourier transform

2) Numerical integration with Riemann sum

3) Monte Carlo method

መ𝜁 𝑦 =
1

𝑛


𝑖=1

𝑛

𝜂−1 𝑦 − 𝑧𝑖



▪ Modelling both actuator and sensor nonlinearities

▪ Modeling physical, chemical, biological processes:

▪polymerase reactors

▪ionospheric processes

▪pH processes

▪magnetospheric dynamics

▪ Modelling electrically simulated muscles

▪ Modelling power amplifiers, electrical drives

▪ Modelling magneto-rheological dampers

Applications



▪ Combination of both parametric and nonparametric
approaches

▪ The system is identifiable and the solution is unique for 
the impulse response fulfilling the given assumptions and 
for output nonlinearity satisfying Haar condition

▪ Division of the identification into stages significantly
reduces dimensionality of the system identification

▪ Effectiveness is strictly related to the length of the 
impulse response

▪ Recommended for dynamic filters with short memory and 
more elaborated nonlinearities

▪ The algorithm for H-W system identification can adapt 
itself both to Hammerstein and Wiener systems 
separately without any additional knowledge about the 
examined system

Conclusions
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