Direct identification of the linear block in Wiener system

Paweł Wachel \& Grzegorz Mzyk

Wrocław University of Technology
Poland

24th Nov 2014

The problem

Figure: The Wiener system

$$
\begin{align*}
& V_{n}=\sum_{i=0}^{p} \lambda_{i}^{*} X_{n-i}, \tag{1}\\
& Y_{n}=g\left(V_{n}\right)+Z_{n}, \tag{2}
\end{align*}
$$

Assumptions

A1 The input signal $\left\{X_{n}\right\}$ is an i.i.d sequence with zero mean and continuous density function $f(x)$, symmetric around the known point e.g. $x=0$.
A2 The nonlinearity $g(\cdot)$ has bounded derivative. Furthermore $g(0)=0$.
A3 The additive noise signal $\left\{Z_{n}\right\}$ is zero-mean i.i.d. sequence with finite variance. Both $\left\{X_{n}\right\}$ and $\left\{Z_{n}\right\}$ are independent random sequences.

The idea

$$
\begin{equation*}
Y_{n}=G\left(\mathbf{X}_{n} ; \lambda^{*}\right)+Z_{n}, \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathbf{X}_{n} & =\left(X_{n}, X_{n-1}, \ldots, X_{n-p}\right)^{T} \\
\lambda^{*} & =\left(\lambda_{0}^{*}, \lambda_{1}^{*}, \ldots, \lambda_{p}^{*}\right)^{T}
\end{aligned}
$$

and

$$
\begin{aligned}
G\left(\mathbf{x} ; \lambda^{*}\right) & =g\left(\lambda^{* T} \mathbf{x}\right) \\
\mathbf{x} & \in R^{p+1}
\end{aligned}
$$

Least squares criterion

$$
\mathcal{Q}(\lambda)=E\left\{Y_{i}-G\left(\mathbf{X}_{i} ; \lambda\right)\right\}^{2} \rightarrow \min _{\lambda}
$$

but $G(\cdot)$ is unknown
The gradient of $G(\mathbf{x} ; \boldsymbol{\lambda})$ (with respect to \mathbf{x} and for arbitrary $\lambda \in \mathbb{R}^{p+1}$) is proportional to λ

$$
\nabla_{\mathrm{x}} G(\mathbf{x} ; \boldsymbol{\lambda})=c_{\lambda}(\mathbf{x} ; \boldsymbol{\lambda}) \lambda^{\top}, \text { where } c_{\lambda}=g^{\prime}\left(\lambda^{\top} \mathbf{x}\right)
$$

Taylor's expansion

$$
\begin{equation*}
G\left(\mathbf{X}_{i} ; \lambda\right)=G(\mathbf{x} ; \lambda)+c_{\lambda} \lambda^{T}\left(\mathbf{X}_{i}-\mathbf{x}\right)+r_{i}, \tag{4}
\end{equation*}
$$

Kernel least squares criterion (local linear approximation)
$Q_{\mathbf{x}}(\boldsymbol{\lambda})=E\left\{\left[Y_{i}-\left(G(\mathbf{x} ; \boldsymbol{\lambda})+\lambda^{T}\left(\mathbf{X}_{i}-\mathbf{x}\right)\right)\right]^{2} K_{h}\left(\left\|\mathbf{X}_{i}-\mathbf{x}\right\|\right)\right\}$,

Empirical criterion

For $\mathbf{x}=0$

$$
\begin{gather*}
Q_{\mathbf{0}}(\boldsymbol{\lambda})=E\left\{\left[Y_{i}-\lambda^{T} \mathbf{X}_{i}\right]^{2} K_{h}\left(\left\|\mathbf{X}_{i}\right\|\right)\right\} \tag{6}\\
\arg \min _{\lambda} Q_{\mathbf{0}}(\lambda)=c_{\lambda^{*}} \lambda^{*} . \\
\hat{Q}_{\mathbf{0}}(\boldsymbol{\lambda})=\frac{1}{N} \sum_{i=1}^{N}\left[Y_{i}-\lambda^{T} \mathbf{X}_{i}\right]^{2} K_{h}\left(\left\|\mathbf{X}_{i}\right\|\right), \\
\hat{\lambda}=\operatorname{argmin}_{\lambda} \hat{Q}(\boldsymbol{\lambda})
\end{gather*}
$$

The algorithm

$$
\begin{equation*}
\hat{\lambda}=\left[\frac{1}{N} \sum_{i=1}^{N} \mathbf{A}_{i}\right]^{-1}\left[\frac{1}{N} \sum_{i=1}^{N} \mathbf{B}_{i}\right], \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
\mathbf{A}_{i} & =\mathbf{X}_{i} \mathbf{X}_{i}^{\top} K\left(\left\|\mathbf{X}_{i}\right\| / h\right), \tag{8}\\
\mathbf{B}_{i} & =Y_{i} \mathbf{X}_{i} K\left(\| \| \mathbf{X}_{i} \| / h\right) . \tag{9}
\end{align*}
$$

The consistency

Theorem

Let assumptions A1-A3 be in force. Then, for $h=N^{-\alpha}$, where $\alpha \in\left(0, \frac{1}{d}\right)$ and $d=p+1$, the estimate $\hat{\lambda}$ is consistent estimate of the scaled impulse response of the dynamic subsystem, i.e.

$$
\begin{equation*}
\hat{\lambda} \rightarrow c \lambda^{*} \text { in probability } \tag{10}
\end{equation*}
$$

as $N \rightarrow \infty$, where $c=c_{\lambda^{*}}$ is a multiplicative constant.

Generalization

Remark

Although the algorithm was derived and analyzed for the input symmetrically distributed around the point $\mathbf{x}=0$, it can be generalized for much wider class of densities. Furthermore, for each pair $\left(\mathbf{X}_{i}, Y_{i}\right)$ and $\left(\mathbf{X}_{j}, Y_{j}\right), i, j=1,2, \ldots, N$, we can expand $G(\mathbf{x} ; \boldsymbol{\lambda})$ around the point $\mathbf{x}=\mathbf{X}_{j}$ (provided that $G(\mathbf{x} ; \boldsymbol{\lambda})$ is differentiable), which leads to

$$
Y_{i}=Y_{j}+c_{i j} \lambda^{*}\left(\mathbf{X}_{i}-\mathbf{X}_{j}\right)+r_{i j}+Z_{i}-Z_{j}
$$

Introducing $Y_{i j}=Y_{i}-Y_{j}, \mathbf{X}_{i j}=\mathbf{X}_{i}-\mathbf{X}_{j}$, and $Z_{i j}=Z_{i}-Z_{j}$, we obtain that

$$
Y_{i j}=c_{i j} \lambda^{*} \mathbf{X}_{i j}+r_{i j}+Z_{i j},
$$

where $c_{i j} \rightarrow$ const, as $\left\|\mathbf{X}_{i j}\right\| \rightarrow 0$, and the components of $\mathbf{X}_{i j}$ are obviously symmetrically distributed.

Practical aspects (1)

Since the probability of the selection event $P\left(\left\|\mathbf{X}_{i j}\right\|<h\right) \sim h^{d}$ decreases very fast as $h \rightarrow 0$ (particularly for large dimension d of the vector $\mathbf{X}_{i j}$) we propose to repeat estimation around all points $\mathbf{x}=\mathbf{X}_{j}, j=1,2, \ldots, N$, i.e., to compute

$$
\begin{equation*}
\hat{\lambda}_{j}=\left[\frac{1}{N} \sum_{i=1}^{N} \mathbf{A}_{i j}\right]^{-1}\left[\frac{1}{N} \sum_{i=1}^{N} \mathbf{B}_{i j}\right] \tag{11}
\end{equation*}
$$

where

$$
\begin{align*}
\mathbf{A}_{i j} & =\mathbf{X}_{i j} \mathbf{X}_{i j}^{T} K\left(\left\|\mathbf{X}_{i j}\right\| / h\right), \tag{12}\\
\mathbf{B}_{i j} & =Y_{i j} \mathbf{X}_{i j} K\left(\left\|\mathbf{X}_{i j}\right\| / h\right) . \tag{13}
\end{align*}
$$

Practical aspects (2)

This provides the series of estimates $\left\{\hat{\lambda}_{j}\right\}_{j=1}^{N}$, that can be next averaged as follows

$$
\begin{equation*}
\tilde{\lambda}=\frac{\sum_{j=1}^{N} w_{j} \hat{\lambda}_{j}}{\sum_{j=1}^{N} w_{j}}, \tag{14}
\end{equation*}
$$

where w_{j} 's are properly selected weighting factors.
We propose

$$
\begin{equation*}
w_{j}=\operatorname{sgn} \hat{\lambda}_{j}[1] \cdot I(j), \tag{15}
\end{equation*}
$$

where

$$
I(j)=\left\{\begin{array}{l}
1, \text { as } \| \hat{\lambda}_{j} \\
0, \text { as } \| \geqslant r \\
\widehat{\lambda}_{j} \|<r
\end{array}\right.
$$

Simulation example

$g(V)=\sin (V), \quad \lambda^{*}=[2,1]^{T}, \quad X_{n} \sim U[-10,10]$, $Z_{n} \sim U[-0.1,0.1]$
The identification experiment was repeated for $N=1000, h=1$ and various values of the threshold parameter r

$$
r(\alpha)=\left\|\lambda_{[\alpha]}\right\|
$$

where $\left\|\lambda_{[\alpha]}\right\|$ denotes a sample α-th order quantile of the random variable $\left\|\hat{\lambda}_{j}\right\|$. The following estimation error was computed in $R=10$ repeats

$$
e=\frac{1}{R} \sum_{k=1}^{R}\left\|c_{k} \tilde{\lambda}^{(k)}-\lambda^{*}\right\|
$$

with normalization factor $c_{k}=\lambda^{*}[1] / \tilde{\lambda}^{(k)}[1]$

Simulation example (cont.)

Figure: Estimation error e vs. number of data N and selection parameter α

Pros and Cons

+ weak assumptions, nonparametric nonlinearity, differentiable in the selected points
+ simple algorithm, no nonlinear optimization (only linear least squares + kernel selection)
+ direct recovery of the impulse response (and intraction signal), decomposition of the Wiener system
- slow convergence, ($p+1$ dimensional space)
- problems with generatization for L-N-L system
- FIR

