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The problem
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Figure: The Wiener system

Vn =
p

∑
i=0

λ∗i Xn−i , (1)

Yn = g (Vn) + Zn, (2)
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Assumptions

A1 The input signal {Xn} is an i.i.d sequence with zero mean and
continuous density function f (x), symmetric around the known
point e.g. x = 0.
A2 The nonlinearity g (·) has bounded derivative. Furthermore
g (0) = 0.
A3 The additive noise signal {Zn} is zero—mean i.i.d. sequence
with finite variance. Both {Xn} and {Zn} are independent random
sequences.
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The idea

Yn = G (Xn;λ∗) + Zn, (3)

where

Xn = (Xn,Xn−1, . . . ,Xn−p)
T

λ∗ =
(
λ∗0,λ

∗
1, . . . ,λ∗p

)T
and

G (x;λ∗) = g
(

λ∗T x
)

x ∈ Rp+1
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Least squares criterion

Q (λ) = E {Yi − G (Xi ;λ)}2 → min
λ

but G (·) is unknown
The gradient of G (x;λ) (with respect to x and for arbitrary
λ ∈ Rp+1) is proportional to λ

∇xG (x;λ) = cλ (x;λ) λT , where cλ = g
′
(

λT x
)

Taylor’s expansion

G (Xi ;λ) = G (x;λ) + cλλT (Xi − x) + ri , (4)

Kernel least squares criterion (local linear approximation)

Qx (λ) = E
{[
Yi −

(
G (x;λ) + λT (Xi − x)

)]2
Kh (‖Xi − x‖)

}
,

(5)
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Empirical criterion

For x = 0

Q0(λ) = E
{[
Yi − λTXi

]2
Kh (‖Xi‖)

}
(6)

argmin
λ
Q0(λ) = cλ∗λ

∗.

Q̂0 (λ) =
1
N

N

∑
i=1

[
Yi − λTXi

]2
Kh (‖Xi‖) ,

λ̂ = argminλ Q̂ (λ)
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The algorithm

λ̂ =

[
1
N

N

∑
i=1
Ai

]−1 [
1
N

N

∑
i=1
Bi

]
, (7)

where

Ai = XiXTi K (‖Xi‖ /h) , (8)

Bi = YiXiK (‖Xi‖ /h) . (9)
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The consistency

Theorem

Let assumptions A1 —A3 be in force. Then, for h = N−α, where
α ∈ (0, 1d ) and d = p + 1, the estimate λ̂ is consistent estimate of
the scaled impulse response of the dynamic subsystem, i.e.

λ̂→cλ∗ in probability (10)

as N → ∞, where c = cλ∗ is a multiplicative constant.
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Generalization

Remark
Although the algorithm was derived and analyzed for the input
symmetrically distributed around the point x = 0, it can be
generalized for much wider class of densities. Furthermore, for
each pair (Xi ,Yi ) and (Xj ,Yj ), i , j = 1, 2, ...,N, we can expand
G (x;λ) around the point x = Xj (provided that G (x;λ) is
differentiable), which leads to

Yi = Yj + cijλ
∗ (Xi −Xj ) + rij + Zi − Zj ,

Introducing Yij = Yi − Yj , Xij = Xi −Xj , and Zij = Zi − Zj , we
obtain that

Yij = cijλ
∗Xij + rij + Zij ,

where cij → const, as ‖Xij‖ → 0, and the components of Xij are
obviously symmetrically distributed.
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Practical aspects (1)

Since the probability of the selection event P (‖Xij‖ < h) ∼ hd
decreases very fast as h→ 0 (particularly for large dimension d of
the vector Xij ) we propose to repeat estimation around all points
x = Xj , j = 1, 2, ...,N, i.e., to compute

λ̂j =

[
1
N

N

∑
i=1
Aij

]−1 [
1
N

N

∑
i=1
Bij

]
, (11)

where

Aij = XijXTij K (‖Xij‖ /h) , (12)

Bij = YijXijK (‖Xij‖ /h) . (13)
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Practical aspects (2)

This provides the series of estimates
{

λ̂j

}N
j=1
, that can be next

averaged as follows

λ̃=
∑N
j=1 wj λ̂j

∑N
j=1 wj

, (14)

where wj’s are properly selected weighting factors.
We propose

wj = sgn λ̂j [1] · I (j), (15)

where

I (j) =

 1, as
∥∥∥λ̂j

∥∥∥ > r
0, as

∥∥∥λ̂j

∥∥∥ < r
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Simulation example

g(V ) = sin(V ), λ∗ = [2, 1]T , Xn ∼ U [−10, 10],
Zn ∼ U [−0.1, 0.1]
The identification experiment was repeated for N = 1000, h = 1
and various values of the threshold parameter r

r(α) =
∥∥∥λ[α]

∥∥∥ ,
where

∥∥∥λ[α]

∥∥∥ denotes a sample α-th order quantile of the random

variable
∥∥∥λ̂j

∥∥∥. The following estimation error was computed in
R = 10 repeats

e =
1
R

R

∑
k=1

∥∥∥∥ck λ̃
(k )−λ∗

∥∥∥∥ ,
with normalization factor ck = λ∗[1]/λ̃

(k )
[1]
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Simulation example (cont.)
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Figure: Estimation error e vs. number of data N and selection parameter
α
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Pros and Cons

+ weak assumptions, nonparametric nonlinearity, differentiable in
the selected points

+ simple algorithm, no nonlinear optimization (only linear least
squares + kernel selection)

+ direct recovery of the impulse response (and intraction signal),
decomposition of the Wiener system

− slow convergence, (p + 1 dimensional space)

− problems with generatization for L-N-L system

− FIR
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