The algorithm	Practical aspects	Conclussions

Direct identification of the linear block in Wiener system

Paweł Wachel & Grzegorz Mzyk

Wrocław University of Technology Poland

24th Nov 2014

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Introduction	The algorithm	Practical aspects	Simulation	Conclussions
●000	0000	00	00	O
The probler	n			

Figure: The Wiener system

$$V_n = \sum_{i=0}^p \lambda_i^* X_{n-i}, \qquad (1)$$

$$Y_n = g(V_n) + Z_n, \qquad (2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	The algorithm	Practical aspects	Simulation	Conclussions
0●00	0000	00	00	0
Assumption	S			

A1 The input signal $\{X_n\}$ is an *i.i.d* sequence with zero mean and continuous density function f(x), symmetric around the known point e.g. x = 0.

A2 The nonlinearity $g(\cdot)$ has bounded derivative. Furthermore g(0) = 0.

A3 The additive noise signal $\{Z_n\}$ is zero-mean *i.i.d.* sequence with finite variance. Both $\{X_n\}$ and $\{Z_n\}$ are independent random sequences.

Introduction	The algorithm	Practical aspects	Simulation	Conclussions
0000	0000	00	00	0
The idea				

$$Y_n = G\left(\mathbf{X}_n; \boldsymbol{\lambda}^*\right) + Z_n, \tag{3}$$

◆□ → < @ → < E → < E → ○ < ○ < ○ </p>

where

$$\mathbf{X}_{n} = (X_{n}, X_{n-1}, \dots, X_{n-p})^{T}$$
$$\boldsymbol{\lambda}^{*} = (\lambda_{0}^{*}, \lambda_{1}^{*}, \dots, \lambda_{p}^{*})^{T}$$

 $\quad \text{and} \quad$

$$G(\mathbf{x}; \boldsymbol{\lambda}^*) = g\left(\boldsymbol{\lambda}^{*T} \mathbf{x}\right)$$
$$\mathbf{x} \in R^{p+1}$$

Least squar	es criterion			
Introduction	The algorithm	Practical aspects	Simulation	Conclussions
0000	0000	00	00	O

$$\mathcal{Q}(\lambda) = E\left\{Y_i - G\left(\mathbf{X}_i; \lambda\right)\right\}^2 \to \min_{\lambda}$$

but $G(\cdot)$ is unknown The gradient of $G(\mathbf{x}; \lambda)$ (with respect to \mathbf{x} and for arbitrary $\lambda \in \mathbb{R}^{p+1}$) is proportional to λ

$$abla_{\mathbf{x}} G\left(\mathbf{x}; \lambda
ight) = c_{\lambda}\left(\mathbf{x}; \lambda
ight) \lambda^{\mathcal{T}}$$
, where $c_{\lambda} = g'\left(\lambda^{\mathcal{T}} \mathbf{x}
ight)$

Taylor's expansion

$$G(\mathbf{X}_{i}; \boldsymbol{\lambda}) = G(\mathbf{x}; \boldsymbol{\lambda}) + c_{\boldsymbol{\lambda}} \boldsymbol{\lambda}^{T} (\mathbf{X}_{i} - \mathbf{x}) + r_{i}, \qquad (4)$$

Kernel least squares criterion (local linear approximation)

$$Q_{\mathbf{x}}(\lambda) = E\left\{\left[Y_{i} - \left(G\left(\mathbf{x};\lambda\right) + \lambda^{T}\left(\mathbf{X}_{i} - \mathbf{x}\right)\right)\right]^{2} K_{h}\left(\|\mathbf{X}_{i} - \mathbf{x}\|\right)\right\},$$

Introduction	The algorithm	Practical aspects	Simulation	Conclussions
0000	●000	00	00	O
Empirical	criterion			

For $\mathbf{x} = \mathbf{0}$

$$Q_{0}(\lambda) = E\left\{\left[Y_{i} - \lambda^{T} \mathbf{X}_{i}\right]^{2} K_{h}\left(\|\mathbf{X}_{i}\|\right)\right\}$$
(6)
arg min $Q_{0}(\lambda) = c_{\lambda^{*}}\lambda^{*}$.
$$\hat{Q}_{0}(\lambda) = \frac{1}{N} \sum_{i=1}^{N} \left[Y_{i} - \lambda^{T} \mathbf{X}_{i}\right]^{2} K_{h}\left(\|\mathbf{X}_{i}\|\right),$$
$$\hat{\lambda} = \operatorname{argmin}_{\lambda} \hat{Q}(\lambda)$$

Introduction	The algorithm	Practical aspects	Simulation	Conclussions
0000	0●00	00	00	O
The algor	rithm			

$$\hat{\boldsymbol{\lambda}} = \left[\frac{1}{N}\sum_{i=1}^{N} \mathbf{A}_{i}\right]^{-1} \left[\frac{1}{N}\sum_{i=1}^{N} \mathbf{B}_{i}\right], \quad (7)$$

where

$$\mathbf{A}_{i} = \mathbf{X}_{i} \mathbf{X}_{i}^{T} K \left(\|\mathbf{X}_{i}\| / h \right), \qquad (8)$$

$$\mathbf{B}_{i} = Y_{i} \mathbf{X}_{i} K \left(\|\mathbf{X}_{i}\| / h \right). \qquad (9)$$

Introduction	The algorithm	Practical aspects	Simulation	Conclussions	
0000	00●0	00	00	O	
The consistency					

Theorem

Let assumptions **A1** – **A3** be in force. Then, for $h = N^{-\alpha}$, where $\alpha \in (0, \frac{1}{d})$ and d = p + 1, the estimate $\hat{\lambda}$ is consistent estimate of the scaled impulse response of the dynamic subsystem, i.e.

$$\hat{\lambda}
ightarrow c \lambda^*$$
 in probability (10)

・ロト ・四ト ・ヨト ・ヨト ・ヨ

as $N \to \infty$, where $c = c_{\lambda^*}$ is a multiplicative constant.

Conoraliz	ation			J
Introduction	The algorithm	Practical aspects	Simulation	Conclussions 0

Remark

Although the algorithm was derived and analyzed for the input symmetrically distributed around the point $\mathbf{x} = 0$, it can be generalized for much wider class of densities. Furthermore, for each pair (\mathbf{X}_i, Y_i) and (\mathbf{X}_j, Y_j) , i, j = 1, 2, ..., N, we can expand $G(\mathbf{x}; \lambda)$ around the point $\mathbf{x} = \mathbf{X}_j$ (provided that $G(\mathbf{x}; \lambda)$ is differentiable), which leads to

$$Y_i = Y_j + c_{ij} \lambda^* \left(\mathbf{X}_i - \mathbf{X}_j
ight) + r_{ij} + Z_i - Z_j,$$

Introducing $Y_{ij} = Y_i - Y_j$, $\mathbf{X}_{ij} = \mathbf{X}_i - \mathbf{X}_j$, and $Z_{ij} = Z_i - Z_j$, we obtain that

$$Y_{ij}=c_{ij}\lambda^*\mathbf{X}_{ij}+r_{ij}+Z_{ij}$$
 ,

where $c_{ij} \rightarrow \text{const}$, as $\|\mathbf{X}_{ij}\| \rightarrow 0$, and the components of \mathbf{X}_{ij} are obviously symmetrically distributed.

Since the probability of the selection event $P(||\mathbf{X}_{ij}|| < h) \sim h^d$ decreases very fast as $h \to 0$ (particularly for large dimension d of the vector \mathbf{X}_{ij}) we propose to repeat estimation around all points $\mathbf{x} = \mathbf{X}_j$, j = 1, 2, ..., N, *i.e.*, to compute

$$\hat{\boldsymbol{\lambda}}_{j} = \left[rac{1}{N}\sum_{i=1}^{N} \mathbf{A}_{ij}
ight]^{-1} \left[rac{1}{N}\sum_{i=1}^{N} \mathbf{B}_{ij}
ight],$$
 (11)

where

$$\mathbf{A}_{ij} = \mathbf{X}_{ij} \mathbf{X}_{ij}^{\mathsf{T}} K \left(\| \mathbf{X}_{ij} \| / h \right), \qquad (12)$$

$$\mathbf{B}_{ij} = Y_{ij} \mathbf{X}_{ij} K \left(\| \mathbf{X}_{ij} \| / h \right). \qquad (13)$$

 Introduction
 The algorithm
 Practical aspects
 Simulation
 Conclussions

 ooo
 oo
 oo
 oo
 oo

This provides the series of estimates $\left\{\hat{\lambda}_j\right\}_{j=1}^N$, that can be next averaged as follows

$$\widetilde{\lambda} = \frac{\sum_{j=1}^{N} w_j \widehat{\lambda}_j}{\sum_{j=1}^{N} w_j},$$
(14)

where w_j 's are properly selected weighting factors. We propose

$$w_j = \operatorname{sgn} \widehat{\lambda}_j[1] \cdot I(j),$$
 (15)

where

$$I(j) = \left\{ egin{array}{c} 1, ext{ as } \ 0, ext{ as } \ \left\| \widehat{\lambda}_j
ight\| \geqslant r \ 2, \ r \end{array}
ight.$$

0000	0000	00	●0	O		
Simulation example						

$$g(V) = \sin(V), \quad \lambda^* = [2, 1]^T, \quad X_n \sim U[-10, 10], \\ Z_n \sim U[-0.1, 0.1]$$

The identification experiment was repeated for N = 1000, h = 1and various values of the threshold parameter r

$$r(lpha) = \left\| oldsymbol{\lambda}_{[lpha]}
ight\|$$
 ,

where $\|\lambda_{[\alpha]}\|$ denotes a sample α -th order quantile of the random variable $\|\hat{\lambda}_j\|$. The following estimation error was computed in R = 10 repeats

$$e = rac{1}{R}\sum\limits_{k=1}^{R}\left\|c_k\widetilde{\lambda}^{(k)}\!-\!\lambda^*
ight\|,$$

with normalization factor $c_k = oldsymbol{\lambda}^*[1]/\widetilde{oldsymbol{\lambda}}^{(k)}[1]$

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ →

Introduction	The algorithm	Practical aspects	Simulation	Conclussions
0000	0000	00	⊙●	O
Simulation	example (co	ont.)		

Figure: Estimation error e vs. number of data N and selection parameter α

・ロト ・ 日 ト ・ モト ・ モト

æ.

Introduction	The algorithm	Practical aspects	Simulation	Conclussions
0000	0000	00	00	•
Pros and Co	ons			

- $+\,$ weak assumptions, nonparametric nonlinearity, differentiable in the selected points
- + simple algorithm, no nonlinear optimization (only linear least squares + kernel selection)
- + direct recovery of the impulse response (and intraction signal), decomposition of the Wiener system

- slow convergence, (p+1 dimensional space)
- problems with generatization for L-N-L system
- FIR